↓ Skip to main content

Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction

Overview of attention for article published in Molecular Neurodegeneration, March 2021
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

news
1 news outlet
twitter
19 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
92 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction
Published in
Molecular Neurodegeneration, March 2021
DOI 10.1186/s13024-021-00433-8
Pubmed ID
Authors

Emma M. Perkins, Karen Burr, Poulomi Banerjee, Arpan R. Mehta, Owen Dando, Bhuvaneish T. Selvaraj, Daumante Suminaite, Jyoti Nanda, Christopher M. Henstridge, Thomas H. Gillingwater, Giles E. Hardingham, David J. A. Wyllie, Siddharthan Chandran, Matthew R. Livesey

Abstract

Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear. To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling. We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD. These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 92 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 92 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 28%
Student > Master 10 11%
Researcher 9 10%
Student > Bachelor 7 8%
Unspecified 3 3%
Other 9 10%
Unknown 28 30%
Readers by discipline Count As %
Neuroscience 27 29%
Biochemistry, Genetics and Molecular Biology 11 12%
Agricultural and Biological Sciences 8 9%
Medicine and Dentistry 6 7%
Unspecified 3 3%
Other 5 5%
Unknown 32 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 21. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2023.
All research outputs
#1,732,154
of 24,818,814 outputs
Outputs from Molecular Neurodegeneration
#161
of 936 outputs
Outputs of similar age
#45,482
of 426,812 outputs
Outputs of similar age from Molecular Neurodegeneration
#9
of 24 outputs
Altmetric has tracked 24,818,814 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 936 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.1. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 426,812 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.