↓ Skip to main content

Bmi1+ cardiac progenitor cells contribute to myocardial repair following acute injury

Overview of attention for article published in Stem Cell Research & Therapy, July 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
2 news outlets
twitter
5 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bmi1+ cardiac progenitor cells contribute to myocardial repair following acute injury
Published in
Stem Cell Research & Therapy, July 2016
DOI 10.1186/s13287-016-0355-7
Pubmed ID
Authors

Iñigo Valiente-Alandi, Carmen Albo-Castellanos, Diego Herrero, Iria Sanchez, Antonio Bernad

Abstract

The inability of the adult mammalian heart to replace cells lost after severe cardiac injury compromises organ function. Although the heart is one of the least regenerative organs in the body, evidence accumulated in recent decades indicates a certain degree of renewal after injury. We have evaluated the role of cardiac Bmi1 (+) progenitor cells (Bmi1-CPC) following acute myocardial infarction (AMI). Bmi1 (Cre/+);Rosa26 (YFP/+) (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1 (+) cells. YFP(+) cells were tracked following myocardial infarction. Additionally, whole transcriptome analysis of isolated YFP(+) cells was performed in unchallenged hearts and after myocardial infarction. Deep-sequencing analysis of Bmi1-CPC from unchallenged hearts suggests that this population expresses high levels of pluripotency markers. Conversely, transcriptome evaluation of Bmi1-CPC following AMI shows a rich representation of genes related to cell proliferation, movement, and cell cycle. Lineage-tracing studies after cardiac infarction show that the progeny of Bmi1-expressing cells contribute to de novo cardiomyocytes (CM) (13.8 ± 5 % new YFP(+) CM compared to 4.7 ± 0.9 % in age-paired non-infarcted hearts). However, apical resection of TM-induced day 1 Bmi1-YFP pups indicated a very minor contribution of Bmi1-derived cells to de novo CM. Cardiac Bmi1 progenitor cells respond to cardiac injury, contributing to the generation of de novo CM in the adult mouse heart.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 21%
Student > Master 9 19%
Researcher 4 8%
Student > Postgraduate 4 8%
Student > Bachelor 2 4%
Other 9 19%
Unknown 10 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 33%
Agricultural and Biological Sciences 7 15%
Medicine and Dentistry 3 6%
Unspecified 2 4%
Neuroscience 2 4%
Other 7 15%
Unknown 11 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 January 2021.
All research outputs
#1,557,960
of 22,881,964 outputs
Outputs from Stem Cell Research & Therapy
#76
of 2,425 outputs
Outputs of similar age
#31,416
of 365,576 outputs
Outputs of similar age from Stem Cell Research & Therapy
#2
of 39 outputs
Altmetric has tracked 22,881,964 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,425 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 365,576 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.