↓ Skip to main content

Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level

Overview of attention for article published in BMC Plant Biology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level
Published in
BMC Plant Biology, August 2016
DOI 10.1186/s12870-016-0836-y
Pubmed ID
Authors

Pierre Helwi, Sabine Guillaumie, Cécile Thibon, Céline Keime, Aude Habran, Ghislaine Hilbert, Eric Gomes, Philippe Darriet, Serge Delrot, Cornelis van Leeuwen

Abstract

Volatile thiols largely contribute to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless, non-volatile precursors found in the berries and the must. The present study investigates the effects of vine nitrogen (N) status on 3SH and 4MSP content in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) in the berries and the must. This is paralleled by a RNA-seq analysis of gene expression in the berries. The impact of N supply on the expression of the glutathione-S-transferase 3 and 4 (VviGST3 and VviGST4) and the γ-glutamyltranspeptidase (VviGGT), considered as key genes in their biosynthesis, was also evaluated. N supply (N100 treatment) increased the 3SH content in wine while no effect was noticed on 4MSP level. Furthermore, N supply increased Glut-3SH levels in grape berries at late berry ripening stages, and this effect was highly significant in must at harvest. No significant effect of N addition was noticed on Cys-3SH concentration. The transcript abundance of the glutathione-S-transferases VviGST3 and VviGST4 and the γ-glutamyltranspeptidase (VviGGT), were similar between the control and the N100 treatment. New candidate genes which might be implicated in the biosynthetic pathway of 3SH precursors were identified by whole transcriptome shotgun sequencing (RNA-seq). High vine N status has a positive effect on 3SH content in wine through an increase of Glut-3SH levels in grape berries and must. Candidate GSTs and glutathione-S-conjugates type transporters involved in this stimulation were identified by RNA-seq analysis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
New Zealand 1 1%
Unknown 69 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 14%
Researcher 9 13%
Student > Ph. D. Student 9 13%
Student > Bachelor 7 10%
Professor 6 9%
Other 11 16%
Unknown 18 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 33 47%
Biochemistry, Genetics and Molecular Biology 6 9%
Unspecified 2 3%
Chemistry 2 3%
Medicine and Dentistry 2 3%
Other 3 4%
Unknown 22 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2016.
All research outputs
#14,858,030
of 22,882,389 outputs
Outputs from BMC Plant Biology
#1,279
of 3,265 outputs
Outputs of similar age
#225,394
of 364,241 outputs
Outputs of similar age from BMC Plant Biology
#18
of 47 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,265 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,241 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.