↓ Skip to main content

Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae

Overview of attention for article published in Biotechnology for Biofuels, January 2016
Altmetric Badge

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
64 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae
Published in
Biotechnology for Biofuels, January 2016
DOI 10.1186/s13068-016-0570-6
Pubmed ID
Authors

Cadete, Raquel M, de Las Heras, Alejandro M, Sandström, Anders G, Ferreira, Carla, Gírio, Francisco, Gorwa-Grauslund, Marie-Françoise, Rosa, Carlos A, Fonseca, César

Abstract

The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as cofactor but still prefers NADPH, has been used to generate recombinant xylose-fermenting Saccharomyces cerevisiae. Novel xylose-fermenting yeasts species, as those from the Spathaspora clade, have been described and are potential sources of novel genes to improve xylose fermentation in S. cerevisiae. Xylose fermentation by six strains from different Spathaspora species isolated in Brazil, plus the Sp. passalidarum type strain (CBS 10155(T)), was characterized under two oxygen-limited conditions. The best xylose-fermenting strains belong to the Sp. passalidarum species, and their highest ethanol titers, yields, and productivities were correlated to higher XR activity with NADH than with NADPH. Among the different Spathaspora species, Sp. passalidarum appears to be the sole harboring two XYL1 genes: XYL1.1, similar to the XYL1 found in other Spathaspora and yeast species and XYL1.2, with relatively higher expression level. XYL1.1p and XYL1.2p from Sp. passalidarum were expressed in S. cerevisiae TMB 3044 and XYL1.1p was confirmed to be strictly NADPH-dependent, while XYL1.2p to use both NADPH and NADH, with higher activity with the later. Recombinant S. cerevisiae strains expressing XYL1.1p did not show anaerobic growth in xylose medium. Under anaerobic xylose fermentation, S. cerevisiae TMB 3504, which expresses XYL1.2p from Sp. passalidarum, revealed significant higher ethanol yield and productivity than S. cerevisiae TMB 3422, which harbors XYL1p N272D from Sc. stipitis in the same isogenic background (0.40 vs 0.34 g gCDW (-1) and 0.33 vs 0.18 g gCDW (-1) h(-1), respectively). This work explored a new clade of xylose-fermenting yeasts (Spathaspora species) towards the engineering of S. cerevisiae for improved xylose fermentation. The new S. cerevisiae TMB 3504 displays higher XR activity with NADH than with NADPH, with consequent improved ethanol yield and productivity and low xylitol production. This meaningful advance in anaerobic xylose fermentation by recombinant S. cerevisiae (using the XR/XDH pathway) paves the way for the development of novel industrial pentose-fermenting strains.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 95 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 19%
Student > Bachelor 18 19%
Student > Master 16 17%
Researcher 9 9%
Student > Doctoral Student 8 8%
Other 8 8%
Unknown 19 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 28%
Biochemistry, Genetics and Molecular Biology 17 18%
Engineering 10 10%
Chemical Engineering 5 5%
Chemistry 4 4%
Other 6 6%
Unknown 27 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 August 2016.
All research outputs
#6,216,404
of 8,187,659 outputs
Outputs from Biotechnology for Biofuels
#490
of 669 outputs
Outputs of similar age
#182,758
of 257,443 outputs
Outputs of similar age from Biotechnology for Biofuels
#18
of 19 outputs
Altmetric has tracked 8,187,659 research outputs across all sources so far. This one is in the 13th percentile – i.e., 13% of other outputs scored the same or lower than it.
So far Altmetric has tracked 669 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 257,443 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.