↓ Skip to main content

Microbiomes of clownfish and their symbiotic host anemone converge before their first physical contact

Overview of attention for article published in Microbiome, May 2021
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
5 tweeters
video
1 video uploader

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbiomes of clownfish and their symbiotic host anemone converge before their first physical contact
Published in
Microbiome, May 2021
DOI 10.1186/s40168-021-01058-1
Pubmed ID
Authors

Audet-Gilbert Émie, Sylvain François-Étienne, Bouslama Sidki, Derome Nicolas

Abstract

One of the most charismatic, and yet not completely resolved example of mutualistic interaction is the partnership of clownfish and its symbiotic sea anemone. The mechanism explaining this tolerance currently relies on the molecular mimicry of clownfish epithelial mucus, which could serve as camouflage, preventing the anemone's nematocysts' discharge. Resident bacteria are known as key drivers of epithelial mucus chemical signature in vertebrates. A recent study has proposed a restructuration of the skin microbiota in a generalist clown fish when first contacting its symbiotic anemone. We explored a novel hypothesis by testing the effect of remote interaction on epithelial microbiota restructuration in both partners. With metataxonomics, we investigated the epithelial microbiota dynamic of 18 pairs of percula clownfish (Amphiprion percula) and their symbiotic anemone Heteractis magnifica in remote interaction, physical interaction and control groups for both partners during a 4-week trial. The Physical and Remote Interaction groups' results evidence gradual epithelial microbiota convergence between both partners when fish and anemone were placed in the same water system. This convergence occurred preceding any physical contact between partners, and was maintained during the 2-week interaction period in both contact groups. After the interaction period, community structure of both fish and anemone's epthelial community structures maintained the interaction signature 2 weeks after fish-anemone pairs' separation. Furthermore, the interaction signature persistence was observed both in the Physical and Remote Interaction groups, thus suggesting that water-mediated chemical communication between symbiotic partners was strong enough to shift the skin microbiota durably, even after the separation of fish-anemone pairs. Finally, our results suggest that fish-anemone convergent microbiota restructuration was increasingly associated with the parallel recruitment of three Flavobacteriaceae strains closely related to a tyrosinase-producing Cellulophaga tyrosinoxydans. Our study shows that bacterial community restructuration, in the acclimation process, does not only rely on direct physical contact. Furthermore, our results challenge, for the first time, the traditional unidirectional chemical camouflage hypothesis, as we argue that convergence of the epithelial microbiota of both partners may play essential roles in establishing mutual acceptance. Video abstract Fish-anemone symbiotic relationship.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 22%
Researcher 1 11%
Student > Ph. D. Student 1 11%
Student > Master 1 11%
Unknown 4 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 33%
Agricultural and Biological Sciences 2 22%
Unknown 4 44%

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2021.
All research outputs
#1,483,608
of 19,462,049 outputs
Outputs from Microbiome
#577
of 1,177 outputs
Outputs of similar age
#38,364
of 341,182 outputs
Outputs of similar age from Microbiome
#1
of 1 outputs
Altmetric has tracked 19,462,049 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,177 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 40.1. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,182 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them