↓ Skip to main content

Target fluorescence in-situ hybridization (Target FISH) for plasma cell enrichment in myeloma

Overview of attention for article published in Molecular Cytogenetics, August 2016
Altmetric Badge

About this Attention Score

  • Among the highest-scoring outputs from this source (#36 of 401)
  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
2 X users
patent
1 patent

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Target fluorescence in-situ hybridization (Target FISH) for plasma cell enrichment in myeloma
Published in
Molecular Cytogenetics, August 2016
DOI 10.1186/s13039-016-0263-7
Pubmed ID
Authors

Edmond S. K. Ma, Candy L. N. Wang, Anthony T. C. Wong, Gigi Choy, Tsun Leung Chan

Abstract

Cytogenetic abnormalities are important prognostic markers in plasma cell myeloma (PCM) and detection is routinely performed by interphase fluorescence in-situ hybridization (FISH) with a panel of probes after enrichment of the plasma cells in the bone marrow specimen. Cell sorting by immunomagnetic beads and concurrent labeling of the cytoplasmic immunoglobulin are the usual enrichment methods. We present an alternative method of plasma cell enrichment termed Target FISH, which is an automated system that combines the images of May-Grünwald- Giemsa (MGG) staining and FISH study on the same plasma cell for analysis. Our experience of Target FISH on 40 PCM patients was described. Briefly, plasma cells were MGG stained, image captured, de-stained, FISH probe hybridized and finally relocated for simultaneous analysis of morphology and FISH signal pattern. The FISH probe panel was TP53/CEP17, t(4;14) IGH/FGFR3, t(14;16) IGH/MAF and CKS1B(1q21)/CDKN2C(P18). Gain of 1q21 was the most common abnormality detected in 18 patients (45 %), to be followed by t(4;14) IGH/FGFR3 detected in 11 patients (27.5 %). Of note, 10 patients showed coexistence of both t(4;14) and 1q21 gain. Two patients showed del(17p)/TP53, one in association with t(4;14) and 1q gain while the other was stand alone. None of this patient cohort showed t(14;16) IGH/MAF. Using the critical binomial function, the normal cutoff FISH positive value for del(17p)/TP53 was 3.4 %, t(4;14) IGH/FGFR3 was 6.8 %, t(14;16) IGH/MAF was 5.6 % and +1q21 was 5.7 %. The equipment cost notwithstanding, when compared with cell sorting, the total reagent cost was around 10 % lower in Target FISH. The total processing time was longer for Target FISH but manual fluorescence microscopy was no longer necessary. The main advantage of Target FISH was the complete certainty that the cytogenetic abnormality was detected in the cells of interest, and hence a more stringent analytical cutoff value might be considered. Optimization of the cell collection and slide preparation process upfront was required to accrue adequate target cells on each slide for analysis. Our experience suggested that Target FISH was applicable as a routine method of plasma cell enrichment in clinical diagnostic laboratories.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 25%
Other 2 17%
Student > Ph. D. Student 1 8%
Researcher 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 4 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 25%
Medicine and Dentistry 3 25%
Agricultural and Biological Sciences 1 8%
Unknown 5 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 February 2023.
All research outputs
#6,339,830
of 23,402,852 outputs
Outputs from Molecular Cytogenetics
#36
of 401 outputs
Outputs of similar age
#92,097
of 315,153 outputs
Outputs of similar age from Molecular Cytogenetics
#3
of 12 outputs
Altmetric has tracked 23,402,852 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 401 research outputs from this source. They receive a mean Attention Score of 2.4. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,153 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.