↓ Skip to main content

ISOexpresso: a web-based platform for isoform-level expression analysis in human cancer

Overview of attention for article published in BMC Genomics, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
ISOexpresso: a web-based platform for isoform-level expression analysis in human cancer
Published in
BMC Genomics, August 2016
DOI 10.1186/s12864-016-2852-6
Pubmed ID
Authors

In Seok Yang, Hyeonju Son, Sora Kim, Sangwoo Kim

Abstract

Alternative splicing events that result in the production of multiple gene isoforms reveals important molecular mechanisms. Gene isoforms are often differentially expressed across organs and tissues, developmental stages, and disease conditions. Specifically, recent studies show that aberrant regulation of alternative splicing frequently occurs in cancer to affect tumor cell transformation and growth. While analysis of isoform expression is important for discovering tumor-specific isoform signatures and interpreting relevant genomic mutations, there is currently no web-based, easy-to-use, and publicly available platform for this purpose. We developed ISOexpresso to provide information regarding isoform existence and expression, which can be grouped by cancer vs. normal conditions, cancer types, and tissue types. ISOexpresso implements two main functions: First, the Isoform Expression View function creates visualizations for condition-specific RNA/isoform expression patterns upon query of a gene of interest. With this function, users can easily determine the major isoform (the most expressed isoform in a sample) of a gene with respect to the condition and check whether it matches the known canonical isoform. ISOexpresso outputs expression levels of all known transcripts to check alterations of expression landscape and to find potential tumor-specific isoforms. Second, the User Data Annotation function supports annotation of genomic variants to determine the most plausible consequence of a variation (e.g., an amino acid change) among many possible interpretations. As most coding sequence mutations are effective through the subsequent transcription and translation, ISOexpresso automatically prioritizes transcripts that act as backbones for mutation effect prediction by their relative expression. By employing ISOexpresso, we could investigate the consistency between the most expressed and known canonical/principal isoforms, as well as infer candidate tumor-specific isoforms based on their expression levels. In addition, we confirmed that ISOexpresso could easily reproduce previously known isoform expression patterns: recurrent observation of a major isoform across tissues, differential isoform expression patterns in a given tissue, and switching of major isoform during tumorigenesis. ISOexpresso serves as a web-based, easy-to-use platform for isoform expression and alteration analysis based on large-scale cancer database. We anticipate that ISOexpresso will expedite formulation and confirmation of novel hypotheses by providing isoform-level perspectives on cancer research. The ISOexpresso database is available online at http://wiki.tgilab.org/ISOexpresso/ .

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 72 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 26%
Researcher 11 15%
Student > Master 11 15%
Other 8 11%
Student > Bachelor 8 11%
Other 8 11%
Unknown 8 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 32 44%
Agricultural and Biological Sciences 13 18%
Computer Science 7 10%
Medicine and Dentistry 4 5%
Immunology and Microbiology 3 4%
Other 6 8%
Unknown 8 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2016.
All research outputs
#4,334,196
of 25,736,439 outputs
Outputs from BMC Genomics
#1,589
of 11,316 outputs
Outputs of similar age
#71,697
of 370,587 outputs
Outputs of similar age from BMC Genomics
#41
of 266 outputs
Altmetric has tracked 25,736,439 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,316 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 370,587 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 266 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.