↓ Skip to main content

Deep phylogenomics of a tandem-repeat galectin regulating appendicular skeletal pattern formation

Overview of attention for article published in BMC Ecology and Evolution, August 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
9 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deep phylogenomics of a tandem-repeat galectin regulating appendicular skeletal pattern formation
Published in
BMC Ecology and Evolution, August 2016
DOI 10.1186/s12862-016-0729-6
Pubmed ID
Authors

Ramray Bhat, Mahul Chakraborty, Tilmann Glimm, Thomas A. Stewart, Stuart A. Newman

Abstract

A multiscale network of two galectins Galectin-1 (Gal-1) and Galectin-8 (Gal-8) patterns the avian limb skeleton. Among vertebrates with paired appendages, chondrichthyan fins typically have one or more cartilage plates and many repeating parallel endoskeletal elements, actinopterygian fins have more varied patterns of nodules, bars and plates, while tetrapod limbs exhibit tandem arrays of few, proximodistally increasing numbers of elements. We applied a comparative genomic and protein evolution approach to understand the origin of the galectin patterning network. Having previously observed a phylogenetic constraint on Gal-1 structure across vertebrates, we asked whether evolutionary changes of Gal-8 could have critically contributed to the origin of the tetrapod pattern. Translocations, duplications, and losses of Gal-8 genes in Actinopterygii established them in different genomic locations from those that the Sarcopterygii (including the tetrapods) share with chondrichthyans. The sarcopterygian Gal-8 genes acquired a potentially regulatory non-coding motif and underwent purifying selection. The actinopterygian Gal-8 genes, in contrast, did not acquire the non-coding motif and underwent positive selection. These observations interpreted through the lens of a reaction-diffusion-adhesion model based on avian experimental findings can account for the distinct endoskeletal patterns of cartilaginous, ray-finned, and lobe-finned fishes, and the stereotypical limb skeletons of tetrapods.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 5%
Unknown 19 95%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 30%
Researcher 5 25%
Student > Doctoral Student 2 10%
Student > Ph. D. Student 2 10%
Professor 1 5%
Other 2 10%
Unknown 2 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 35%
Biochemistry, Genetics and Molecular Biology 5 25%
Philosophy 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Earth and Planetary Sciences 1 5%
Other 2 10%
Unknown 3 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 July 2022.
All research outputs
#6,496,106
of 25,374,917 outputs
Outputs from BMC Ecology and Evolution
#1,439
of 3,714 outputs
Outputs of similar age
#95,616
of 354,575 outputs
Outputs of similar age from BMC Ecology and Evolution
#30
of 60 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,575 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 60 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.