↓ Skip to main content

A method for identifying discriminative isoform-specific peptides for clinical proteomics application

Overview of attention for article published in BMC Genomics, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A method for identifying discriminative isoform-specific peptides for clinical proteomics application
Published in
BMC Genomics, August 2016
DOI 10.1186/s12864-016-2907-8
Pubmed ID
Authors

Fan Zhang, Jake Y. Chen

Abstract

Clinical proteomics application aims at solving a specific clinical problem within the context of a clinical study. It has been growing rapidly in the field of biomarker discovery, especially in the area of cancer diagnostics. Until recently, protein isoform has not been viewed as a new class of early diagnostic biomarkers for clinical proteomics. A protein isoform is one of different forms of the same protein. Different forms of a protein may be produced from single-nucleotide polymorphisms (SNPs), alternative splicing, or post-translational modifications (PTMs). Previous studies have shown that protein isoforms play critical roles in tumorigenesis, disease diagnosis, and prognosis. Identifying and characterizing protein isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods such as EST sequencing, Microarray profiling (exon array, Exon-exon junction array), mRNA next-generation sequencing used for protein isoform determination: 1) not in the protein level, 2) no connectivity about connection of nonadjacent exons, 3) no SNPs and PTMs, and 4) low reproducibility. Moreover, there exist the computational challenges of clinical proteomics studies: 1) low sensitivity of instruments, 2) high data noise, and 3) high variability and low repeatability, although recent advances in clinical proteomics technology, LC-MS/MS proteomics, have been used to identify candidate molecular biomarkers in diverse range of samples, including cells, tissues, serum/plasma, and other types of body fluids. Therefore, in the paper, we presented a peptidomics method for identifying cancer-related and isoform-specific peptide for clinical proteomics application from LC-MS/MS. First, we built a Peptidomic Database of Human Protein Isoforms, then created a peptidomics approach to perform large-scale screen of breast cancer-associated alternative splicing isoform markers in clinical proteomics, and lastly performed four kinds of validations: biological validation (explainable index), exon array, statistical validation of independent samples, and extensive pathway analysis. Our results showed that alternative splicing isoform makers can act as independent markers of breast cancer and that the method for identifying cancer-specific protein isoform biomarkers from clinical proteomics application is an effective one for increasing the number of identified alternative splicing isoform markers in clinical proteomics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 16%
Researcher 5 14%
Student > Bachelor 4 11%
Other 3 8%
Student > Master 3 8%
Other 4 11%
Unknown 12 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 24%
Agricultural and Biological Sciences 6 16%
Chemistry 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Computer Science 1 3%
Other 4 11%
Unknown 14 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2017.
All research outputs
#13,509,461
of 23,306,612 outputs
Outputs from BMC Genomics
#4,827
of 10,741 outputs
Outputs of similar age
#181,135
of 345,267 outputs
Outputs of similar age from BMC Genomics
#106
of 273 outputs
Altmetric has tracked 23,306,612 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,741 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,267 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 273 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.