↓ Skip to main content

Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily

Overview of attention for article published in BMC Genomics, August 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily
Published in
BMC Genomics, August 2016
DOI 10.1186/s12864-016-2955-0
Pubmed ID
Authors

Wenqi Li, Xiaohua Liu, Yingmin Lu

Abstract

Oriental hybrid lily 'Sorbonne', a very important cut flower for lily, is enjoyed great popularity in the world, but it must experience a period of low winter temperature to initiate or accelerate the flowering process. To gain a better understanding of the temperature signaling pathway and the molecular metabolic reactions involved in the vernalization response, a genome-wide transcriptional analysis using RNA-Seq was performed. 188,447,956 sequencing reads was assembled into 66,327 unigenes and showed similarity to known proteins in the Swiss-Prot protein database, and 2,893, 30,406 and 60,737 unigenes aligned to existing sequences in the KEGG, COG, and GO databases. Based on qRT-PCR results, we studied the expression of three signal regulation pathways genes-the plant hormones signal transduction (LoAP2, LoIAA1, LoARF10), the DNA methylation (LoCMT, LoFLD), and vernalizatin pathway (LoFLC, LoVRN1, LoVRN2, LoFT, LoSOC1, LoLFY, LoSVP) in the immature flower buds of Oriental hybrid lily. In addition, we identified two vernalizaiton-related genes (LoSVP and LoVRN1) from the cDNA library, which appear to be promising candidates for playing key roles in the development and response of flowering in Oriental lily plants, and LoSVP had a function in delaying flowering but LoVRN1could promote flowering early. We collected a sample for transcriptome sequencing and comparison when the bulb's apical meristem was in the time of floral transition when the apical meristem had not converted into the morphological differentiation process, which helped to obtain more genes playing key roles in the floral induction pathways. The upstream and downstream relationship between different genes were forecasted by the analysis of genes' expression levels in a wide range of time. Future research that is targeted towards how genes interact on each other, which will promote establishing and perfecting the molecular mechanisms of floral induction pathway by vernalization.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 26%
Student > Doctoral Student 2 11%
Student > Postgraduate 2 11%
Student > Master 1 5%
Unspecified 1 5%
Other 2 11%
Unknown 6 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 42%
Unspecified 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Environmental Science 1 5%
Computer Science 1 5%
Other 1 5%
Unknown 6 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2016.
All research outputs
#17,812,737
of 22,883,326 outputs
Outputs from BMC Genomics
#7,583
of 10,668 outputs
Outputs of similar age
#248,840
of 343,744 outputs
Outputs of similar age from BMC Genomics
#186
of 273 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,668 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,744 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 273 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.