↓ Skip to main content

Viral proteins expressed in the protozoan parasite Eimeria tenella are detected by the chicken immune system

Overview of attention for article published in Parasites & Vectors, August 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Viral proteins expressed in the protozoan parasite Eimeria tenella are detected by the chicken immune system
Published in
Parasites & Vectors, August 2016
DOI 10.1186/s13071-016-1756-2
Pubmed ID
Authors

Virginia Marugan-Hernandez, Charlotte Cockle, Sarah Macdonald, Elaine Pegg, Colin Crouch, Damer P. Blake, Fiona M. Tomley

Abstract

Eimeria species are parasitic protozoa that cause coccidiosis, an intestinal disease commonly characterised by malabsorption, diarrhoea and haemorrhage that is particularly important in chickens. Vaccination against chicken coccidiosis is effective using wild-type or attenuated live parasite lines. The development of protocols to express foreign proteins in Eimeria species has opened up the possibility of using Eimeria live vaccines to deliver heterologous antigens and function as multivalent vaccine vectors that could protect chickens against a range of pathogens. In this study, genetic complementation was used to express immunoprotective virus antigens in Eimeria tenella. Infectious bursal disease virus (IBDV) causes Gumboro, an immunosuppressive disease that affects productivity and can interfere with the efficacy of poultry vaccination programmes. Infectious laryngotracheitis virus (ILTV) causes a highly transmissible respiratory disease for which strong cellular immunity and antibody responses are required for effective vaccination. Genes encoding the VP2 protein from a very virulent strain of IBDV (vvVP2) and glycoprotein I from ILTV (gI) were cloned downstream of 5'Et-Actin or 5'Et-TIF promoter regions in plasmids that also contained a mCitrine fluorescent reporter cassette under control of the 5'Et-MIC1 promoter. The plasmids were introduced by nucleofection into E. tenella sporozoites, which were then used to infect chickens. Progeny oocysts were sorted by FACS and passaged several times in vivo until the proportion of fluorescent parasites in each transgenic population reached ~20 % and the number of transgene copies per parasite genome decreased to < 10. All populations were found to transcribe and express the transgene and induced the generation of low titre, transgene-specific antibodies when used to immunise chickens. E. tenella can express antigens of other poultry pathogens that are successfully recognised by the chicken immune system. Nonetheless, further work has to be done in order to improve the levels of expression for its future use as a multivalent vaccine vector.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 19%
Researcher 5 11%
Student > Ph. D. Student 4 9%
Student > Master 4 9%
Student > Postgraduate 3 6%
Other 7 15%
Unknown 15 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 23%
Veterinary Science and Veterinary Medicine 7 15%
Biochemistry, Genetics and Molecular Biology 4 9%
Immunology and Microbiology 3 6%
Social Sciences 2 4%
Other 4 9%
Unknown 16 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2016.
All research outputs
#18,467,727
of 22,883,326 outputs
Outputs from Parasites & Vectors
#4,237
of 5,475 outputs
Outputs of similar age
#262,602
of 342,845 outputs
Outputs of similar age from Parasites & Vectors
#102
of 122 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,475 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,845 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.