↓ Skip to main content

Integrating multiple molecular sources into a clinical risk prediction signature by extracting complementary information

Overview of attention for article published in BMC Bioinformatics, August 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrating multiple molecular sources into a clinical risk prediction signature by extracting complementary information
Published in
BMC Bioinformatics, August 2016
DOI 10.1186/s12859-016-1183-6
Pubmed ID
Authors

Stefanie Hieke, Axel Benner, Richard F. Schlenl, Martin Schumacher, Lars Bullinger, Harald Binder

Abstract

High-throughput technology allows for genome-wide measurements at different molecular levels for the same patient, e.g. single nucleotide polymorphisms (SNPs) and gene expression. Correspondingly, it might be beneficial to also integrate complementary information from different molecular levels when building multivariable risk prediction models for a clinical endpoint, such as treatment response or survival. Unfortunately, such a high-dimensional modeling task will often be complicated by a limited overlap of molecular measurements at different levels between patients, i.e. measurements from all molecular levels are available only for a smaller proportion of patients. We propose a sequential strategy for building clinical risk prediction models that integrate genome-wide measurements from two molecular levels in a complementary way. To deal with partial overlap, we develop an imputation approach that allows us to use all available data. This approach is investigated in two acute myeloid leukemia applications combining gene expression with either SNP or DNA methylation data. After obtaining a sparse risk prediction signature e.g. from SNP data, an automatically selected set of prognostic SNPs, by componentwise likelihood-based boosting, imputation is performed for the corresponding linear predictor by a linking model that incorporates e.g. gene expression measurements. The imputed linear predictor is then used for adjustment when building a prognostic signature from the gene expression data. For evaluation, we consider stability, as quantified by inclusion frequencies across resampling data sets. Despite an extremely small overlap in the application example with gene expression and SNPs, several genes are seen to be more stably identified when taking the (imputed) linear predictor from the SNP data into account. In the application with gene expression and DNA methylation, prediction performance with respect to survival also indicates that the proposed approach might work well. We consider imputation of linear predictor values to be a feasible and sensible approach for dealing with partial overlap in complementary integrative analysis of molecular measurements at different levels. More generally, these results indicate that a complementary strategy for integrating different molecular levels can result in more stable risk prediction signatures, potentially providing a more reliable insight into the underlying biology.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 21%
Student > Doctoral Student 3 21%
Professor > Associate Professor 2 14%
Student > Bachelor 2 14%
Lecturer 1 7%
Other 0 0%
Unknown 3 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 14%
Agricultural and Biological Sciences 2 14%
Social Sciences 2 14%
Nursing and Health Professions 1 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Other 2 14%
Unknown 4 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2016.
All research outputs
#18,468,369
of 22,884,315 outputs
Outputs from BMC Bioinformatics
#6,330
of 7,298 outputs
Outputs of similar age
#257,869
of 336,882 outputs
Outputs of similar age from BMC Bioinformatics
#106
of 136 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,298 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,882 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 136 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.