↓ Skip to main content

A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs

Overview of attention for article published in BMC Bioinformatics, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs
Published in
BMC Bioinformatics, August 2016
DOI 10.1186/s12859-016-1206-3
Pubmed ID
Authors

Dingfang Li, Longqiang Luo, Wen Zhang, Feng Liu, Fei Luo

Abstract

Predicting piwi-interacting RNA (piRNA) is an important topic in the small non-coding RNAs, which provides clues for understanding the generation mechanism of gamete. To the best of our knowledge, several machine learning approaches have been proposed for the piRNA prediction, but there is still room for improvements. In this paper, we develop a genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. We construct datasets for three species: Human, Mouse and Drosophila. For each species, we compile the balanced dataset and imbalanced dataset, and thus obtain six datasets to build and evaluate prediction models. In the computational experiments, the genetic algorithm-based weighted ensemble method achieves 10-fold cross validation AUC of 0.932, 0.937 and 0.995 on the balanced Human dataset, Mouse dataset and Drosophila dataset, respectively, and achieves AUC of 0.935, 0.939 and 0.996 on the imbalanced datasets of three species. Further, we use the prediction models trained on the Mouse dataset to identify piRNAs of other species, and the models demonstrate the good performances in the cross-species prediction. Compared with other state-of-the-art methods, our method can lead to better performances. In conclusion, the proposed method is promising for the transposon-derived piRNA prediction. The source codes and datasets are available in https://github.com/zw9977129/piRNAPredictor .

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 22%
Student > Bachelor 9 16%
Researcher 8 15%
Student > Master 5 9%
Other 3 5%
Other 10 18%
Unknown 8 15%
Readers by discipline Count As %
Computer Science 15 27%
Biochemistry, Genetics and Molecular Biology 8 15%
Engineering 7 13%
Agricultural and Biological Sciences 4 7%
Mathematics 3 5%
Other 7 13%
Unknown 11 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2017.
All research outputs
#13,174,456
of 23,577,761 outputs
Outputs from BMC Bioinformatics
#3,692
of 7,418 outputs
Outputs of similar age
#170,607
of 339,677 outputs
Outputs of similar age from BMC Bioinformatics
#55
of 136 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,418 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,677 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 136 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.