↓ Skip to main content

Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues

Overview of attention for article published in Stem Cell Research & Therapy, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues
Published in
Stem Cell Research & Therapy, August 2016
DOI 10.1186/s13287-016-0383-3
Pubmed ID
Authors

R. Fazzina, P. Iudicone, D. Fioravanti, G. Bonanno, P. Totta, I. G. Zizzari, L. Pierelli

Abstract

Mesenchymal stromal cells (MSCs) have been largely investigated, in the past decade, as potential therapeutic strategies for various acute and chronic pathological conditions. MSCs isolated from different sources, such as bone marrow (BM), umbilical cord tissue (UCT) and adipose tissue (AT), share many biological features, although they may show some differences on cumulative yield, proliferative ability and differentiation potential. The standardization of MSCs growth and their functional amplification is a mandatory objective of cell therapies. The aim of this study was to evaluate the cumulative yield and the ex vivo amplification potential of MSCs obtained from various sources and different subjects, using defined culture conditions with a standardized platelet lysate (PL) as growth stimulus. MSCs isolated from BM, UCT and AT and expanded in human PL were compared in terms of cumulative yield and growth potential per gram of starting tissue. MSCs morphology, phenotype, differentiation potential, and immunomodulatory properties were also investigated to evaluate their biological characteristics. The use of standardized PL-based culture conditions resulted in a very low variability of MSC growth. Our data showed that AT has the greater capacity to generate MSC per gram of initial tissue, compared to BM and UCT. However, UCT-MSCs replicated faster than AT-MSCs and BM-MSCs, revealing a greater proliferation capacity of this source irrespective of its lower MSC yield. All MSCs exhibited the typical MSC phenotype and the ability to differentiate into all mesodermal lineages, while BM-MSCs showed the most prominent immunosuppressive effect in vitro. The adoption of standardized culture conditions may help researchers and clinicians to reveal particular characteristics and inter-individual variability of MSCs sourced from different tissues. These data will be beneficial to set the standards for tissue collection and MSCs clinical-scale expansion both for cell banking and for cell-based therapy settings.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Poland 1 2%
Unknown 55 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 21%
Student > Doctoral Student 8 14%
Student > Ph. D. Student 8 14%
Student > Master 7 12%
Student > Bachelor 4 7%
Other 12 21%
Unknown 6 11%
Readers by discipline Count As %
Medicine and Dentistry 15 26%
Biochemistry, Genetics and Molecular Biology 9 16%
Agricultural and Biological Sciences 6 11%
Pharmacology, Toxicology and Pharmaceutical Science 4 7%
Engineering 4 7%
Other 8 14%
Unknown 11 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2016.
All research outputs
#12,902,953
of 22,884,315 outputs
Outputs from Stem Cell Research & Therapy
#854
of 2,425 outputs
Outputs of similar age
#171,413
of 340,306 outputs
Outputs of similar age from Stem Cell Research & Therapy
#21
of 48 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,425 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,306 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.