↓ Skip to main content

Conservation of the C-type lectin fold for accommodating massive sequence variation in archaeal diversity-generating retroelements

Overview of attention for article published in BMC Molecular and Cell Biology, August 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Conservation of the C-type lectin fold for accommodating massive sequence variation in archaeal diversity-generating retroelements
Published in
BMC Molecular and Cell Biology, August 2016
DOI 10.1186/s12900-016-0064-6
Pubmed ID
Authors

Sumit Handa, Blair G. Paul, Jeffery F. Miller, David L. Valentine, Partho Ghosh

Abstract

Diversity-generating retroelements (DGRs) provide organisms with a unique means for adaptation to a dynamic environment through massive protein sequence variation. The potential scope of this variation exceeds that of the vertebrate adaptive immune system. DGRs were known to exist only in viruses and bacteria until their recent discovery in archaea belonging to the 'microbial dark matter', specifically in organisms closely related to Nanoarchaeota. However, Nanoarchaeota DGR variable proteins were unassignable to known protein folds and apparently unrelated to characterized DGR variable proteins. To address the issue of how Nanoarchaeota DGR variable proteins accommodate massive sequence variation, we determined the 2.52 Å resolution limit crystal structure of one such protein, AvpA, which revealed a C-type lectin (CLec)-fold that organizes a putative ligand-binding site that is capable of accommodating 10(13) sequences. This fold is surprisingly reminiscent of the CLec-folds of viral and bacterial DGR variable protein, but differs sufficiently to define a new CLec-fold subclass, which is consistent with early divergence between bacterial and archaeal DGRs. The structure also enabled identification of a group of AvpA-like proteins in multiple putative DGRs from uncultivated archaea. These variable proteins may aid Nanoarchaeota and these uncultivated archaea in symbiotic relationships. Our results have uncovered the widespread conservation of the CLec-fold in viruses, bacteria, and archaea for accommodating massive sequence variation. In addition, to our knowledge, this is the first report of an archaeal CLec-fold protein.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 25%
Student > Bachelor 5 21%
Professor 3 13%
Other 2 8%
Researcher 2 8%
Other 2 8%
Unknown 4 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 29%
Agricultural and Biological Sciences 6 25%
Earth and Planetary Sciences 3 13%
Chemistry 2 8%
Social Sciences 1 4%
Other 1 4%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2016.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from BMC Molecular and Cell Biology
#1,054
of 1,233 outputs
Outputs of similar age
#308,617
of 348,501 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#12
of 14 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,501 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.