↓ Skip to main content

The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells

Overview of attention for article published in BMC Complementary Medicine and Therapies, August 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
68 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of kaempferol-induced autophagy on differentiation and mineralization of osteoblastic MC3T3-E1 cells
Published in
BMC Complementary Medicine and Therapies, August 2016
DOI 10.1186/s12906-016-1320-9
Pubmed ID
Authors

In-Ryoung Kim, Seong-Eon Kim, Hyun-Su Baek, Bok-Joo Kim, Chul-Hoon Kim, In-Kyo Chung, Bong-Soo Park, Sang-Hun Shin

Abstract

Kaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts. However, the precise cellular mechanism of action of kaempferol in osteogenesis is elusive. Autophagy is a major intracellular degradation system, which plays an important role in cell growth, survival, differentiation and homeostasis in mammals. Recent studies showed that autophagy appeared to be involved in the degradation of osteoclasts, osteoblasts and osteocytes, potentially pointing to a new pathogenic mechanism of bone homeostasis and bone marrow disease. The potential correlation between autophagy, osteogenesis and flavonoids is unclear. The present study verified that kaempferol promoted osteogenic differentiation and mineralization and that it elevated osteogenic gene expression based on alkaline phosphatase (ALP) activity, alizarin red staining and quantitative PCR. And then we found that kaempferol induced autophagy by acridine orange (AO) and monodansylcadaverine (MDC) staining and autophagy-related protein expression. The correlation between kaempferol-induced autophagy and the osteogenic process was confirmed by the autophagy inhibitor 3-methyladenine (3-MA). Kaempferol promoted the proliferation, differentiation and mineralization of osteoblasts at a concentration of 10 μM. Kaempferol showed cytotoxic properties at concentrations above 50 μM. Concentrations above 10 μM decreased ALP activity, whereas those up to 10 μM increased ALP activity. Kaempferol at concentrations up to 10 μM also increased the expression of the osteoblast- activated factors RUNX-2, osterix, BMP-2 and collagen I according to RT-PCR analyses. 10 μM or less, the higher of the concentration and over time, kaempferol promoted the activity of osteoblasts. Kaempferol induced autophagy. It also increased the expression of the autophagy-related factors beclin-1, SQSTM1/p62 and the conversion of LC3-II from LC3-I. The application of 3-MA decreased the activity of ALP and the autophagy induced by kaempferol. In the RT-PCR analysis, the expression of RUNX-2, osterix, BMP-2 and collagen I was decreased. The present study showed that kaempferol stimulated the osteogenic differentiation of cultured osteoblasts by inducing autophagy.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 18%
Researcher 8 18%
Student > Doctoral Student 6 14%
Student > Bachelor 4 9%
Student > Master 3 7%
Other 5 11%
Unknown 10 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 16%
Medicine and Dentistry 6 14%
Agricultural and Biological Sciences 5 11%
Chemistry 3 7%
Materials Science 3 7%
Other 6 14%
Unknown 14 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 September 2016.
All research outputs
#20,338,537
of 22,884,315 outputs
Outputs from BMC Complementary Medicine and Therapies
#2,983
of 3,637 outputs
Outputs of similar age
#294,482
of 337,459 outputs
Outputs of similar age from BMC Complementary Medicine and Therapies
#78
of 101 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,637 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,459 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 101 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.