↓ Skip to main content

DNA methylation and smoking in Korean adults: epigenome-wide association study

Overview of attention for article published in Clinical Epigenetics, September 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DNA methylation and smoking in Korean adults: epigenome-wide association study
Published in
Clinical Epigenetics, September 2016
DOI 10.1186/s13148-016-0266-6
Pubmed ID
Authors

Mi Kyeong Lee, Yoonki Hong, Sun-Young Kim, Stephanie J. London, Woo Jin Kim

Abstract

Exposure to cigarette smoking can increase the risk of cancers and cardiovascular and pulmonary diseases. However, the underlying mechanisms of how smoking contributes to disease risks are not completely understood. Epigenome-wide association studies (EWASs), mostly in non-Asian populations, have been conducted to identify smoking-associated methylation alterations at individual probes. There are few data on regional methylation changes in relation to smoking. Few data link differential methylation in blood to differential gene expression in lung tissue. We identified 108 significant (false discovery rate (FDR) < 0.05) differentially methylated probes (DMPs) and 87 significant differentially methylated regions (DMRs) (multiple-testing corrected p < 0.01) in current compared to never smokers from our EWAS of cotinine-validated smoking in blood DNA from a Korean chronic obstructive pulmonary disease cohort (n = 100 including 31 current, 30 former, and 39 never smokers) using Illumina HumanMethylation450 BeadChip. Of the 108 DMPs (FDR < 0.05), nine CpGs were statistically significant based on Bonferroni correction and 93 were novel including five that mapped to loci previously associated with smoking. Of the 87 DMRs, 66 were mapped to novel loci. Methylation correlated with urine cotinine levels in current smokers at six DMPs, with pack-years in current smokers at six DMPs, and with duration of smoking cessation in former smokers at eight DMPs. Of the 143 genes to which our significant DMPs or DMRs annotated, gene expression levels at 20 genes were associated with pack-years in lung tissue transcriptome data of smokers (Asan Biobank, n = 188). Our study of differential methylation in Koreans confirmed previous findings from non-Asian populations and revealed novel loci in relation to smoking. Smoking-related differential methylation in blood is associated with gene expression in lung tissue, an important target of adverse health effects of smoking, supporting the potential functional importance of methylation in smoking-related disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 27%
Researcher 9 17%
Student > Master 4 8%
Other 3 6%
Student > Bachelor 3 6%
Other 4 8%
Unknown 15 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 35%
Medicine and Dentistry 6 12%
Agricultural and Biological Sciences 4 8%
Nursing and Health Professions 2 4%
Unspecified 2 4%
Other 4 8%
Unknown 16 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2018.
All research outputs
#6,443,657
of 22,889,074 outputs
Outputs from Clinical Epigenetics
#433
of 1,260 outputs
Outputs of similar age
#98,849
of 321,010 outputs
Outputs of similar age from Clinical Epigenetics
#9
of 21 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 1,260 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,010 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.