↓ Skip to main content

Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery

Overview of attention for article published in Genome Biology, February 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
6 X users

Citations

dimensions_citation
108 Dimensions

Readers on

mendeley
169 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery
Published in
Genome Biology, February 2013
DOI 10.1186/gb-2013-14-2-r14
Pubmed ID
Authors

Nikolaj Zuleger, Shelagh Boyle, David A Kelly, Jose I de las Heras, Vassiliki Lazou, Nadia Korfali, Dzmitry G Batrakou, K Natalie Randles, Glenn E Morris, David J Harrison, Wendy A Bickmore, Eric C Schirmer

Abstract

BACKGROUND: Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified. RESULTS: To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts. Five of these proteins had strong effects on chromosome 5, but individual proteins affected different subsets of chromosomes. The repositioning effects were reversible and the proteins with effects all exhibited highly tissue-restricted patterns of expression. Depletion of two nuclear envelope transmembrane proteins that were preferentially expressed in liver each reduced the normal peripheral positioning of chromosome 5 in liver cells. CONCLUSIONS: The discovery of nuclear envelope transmembrane proteins that can modulate chromosome position and have restricted patterns of expression may enable dissection of the functional relevance of tissue-specific patterns of radial chromosome positioning.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 169 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 5 3%
United Kingdom 3 2%
Russia 2 1%
Canada 1 <1%
Japan 1 <1%
South Africa 1 <1%
Unknown 156 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 60 36%
Researcher 34 20%
Student > Master 16 9%
Student > Bachelor 15 9%
Student > Postgraduate 7 4%
Other 20 12%
Unknown 17 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 96 57%
Biochemistry, Genetics and Molecular Biology 43 25%
Medicine and Dentistry 4 2%
Engineering 3 2%
Neuroscience 2 1%
Other 4 2%
Unknown 17 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 February 2014.
All research outputs
#3,105,022
of 25,373,627 outputs
Outputs from Genome Biology
#2,305
of 4,467 outputs
Outputs of similar age
#32,731
of 309,585 outputs
Outputs of similar age from Genome Biology
#27
of 44 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,467 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,585 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.