↓ Skip to main content

Molecular evolution of Odorant-binding proteins gene family in two closely related Anastrepha fruit flies

Overview of attention for article published in BMC Evolutionary Biology, October 2016
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular evolution of Odorant-binding proteins gene family in two closely related Anastrepha fruit flies
Published in
BMC Evolutionary Biology, October 2016
DOI 10.1186/s12862-016-0775-0
Pubmed ID
Authors

Emeline Boni Campanini, Reinaldo Alves de Brito

Abstract

Odorant-binding proteins (OBPs) are of great importance for survival and reproduction since they participate in initial steps of the olfactory signal transduction cascade, solubilizing and transporting chemical signals to the olfactory receptors. A comparative analysis of OBPs between closely related species may help explain how these genes evolve and are maintained under natural selection and how differences in these proteins can affect olfactory responses. We studied OBP genes in the closely related species Anastrepha fraterculus and A. obliqua, which have different host preferences, using data from RNA-seq cDNA libraries of head and reproductive tissues from male and female adults, aiming to understand the speciation process occurred between them. We identified 23 different OBP sequences from Anastrepha fraterculus and 24 from A. obliqua, which correspond to 20 Drosophila melanogaster OBP genes. Phylogenetic analysis separated Anastrepha OBPs sequences in four branches that represent four subfamilies: classic, minus-C, plus-C and dimer. Both species showed five plus-C members, which is the biggest number found in tephritids until now. We found evidence of positive selection in four genes and at least one duplication event that preceded the speciation of these two species. Inferences on tertiary structures of putative proteins from these genes revealed that at least one positively selected change involves the binding cavity (the odorant binding region) in the plus-C OBP50a. A. fraterculus and A. obliqua have a bigger OBP repertoire than the other tephritids studied, though the total number of Anastrepha OBPs may be larger, since we studied only a limited number of tissues. The contrast of these closely related species reveals that there are several amino acid changes between the homologous genes, which might be related to their host preferences. The plus-C OBP that has one amino acid under positive selection located in the binding cavity may be under a selection pressure to recognize and bind a new odorant. The other positively selected sites found may be involved in important structural and functional changes, especially ones in which site-specific changes would radically change amino acid properties.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 20%
Student > Master 7 18%
Student > Ph. D. Student 6 15%
Student > Bachelor 5 13%
Professor 3 8%
Other 6 15%
Unknown 5 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 60%
Biochemistry, Genetics and Molecular Biology 9 23%
Chemical Engineering 1 3%
Engineering 1 3%
Unknown 5 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2016.
All research outputs
#7,341,964
of 8,497,409 outputs
Outputs from BMC Evolutionary Biology
#1,896
of 2,022 outputs
Outputs of similar age
#207,215
of 253,286 outputs
Outputs of similar age from BMC Evolutionary Biology
#72
of 78 outputs
Altmetric has tracked 8,497,409 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,022 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 253,286 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.