↓ Skip to main content

Human cytomegalovirus reactivation from latency: validation of a “switch” model in vitro

Overview of attention for article published in Virology Journal, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Human cytomegalovirus reactivation from latency: validation of a “switch” model in vitro
Published in
Virology Journal, October 2016
DOI 10.1186/s12985-016-0634-z
Pubmed ID
Authors

Maria-Cristina Arcangeletti, Rosita Vasile Simone, Isabella Rodighiero, Flora De Conto, Maria-Cristina Medici, Clara Maccari, Carlo Chezzi, Adriana Calderaro

Abstract

Human cytomegalovirus (HCMV) is an opportunistic pathogen leading to severe and even fatal diseases in 'at-risk' categories of individuals upon primary infection or the symptomatic reactivation of the endogenous virus. The mechanisms which make the virus able to reactivate from latency are still matter of intense study. However, the very low number of peripheral blood monocytes (an important latent virus reservoir) harbouring HCMV DNA makes it very difficult to obtain adequate viral quantities to use in such studies. Thus, the aim of the present study was to demonstrate the usefulness of human THP-1 monocytes, mostly employed as HCMV latent or lytic infection system, as a reactivation model. THP-1 monocytes were infected with HCMV TB40E strain (latency model) at multiplicities of infection (MOI) of 0.5, 0.25 or 0.125. After infection, THP-1 aliquots were differentiated into macrophages (reactivation model). Infections were carried out for 30 h, 4, 6 and 7 days. Viral DNA evaluation was performed with viable and UV-inactivated virus by q-Real-Time PCR. RNA extracted from latency and reactivation models at 7 days post-infection (p.i.) was subjected to RT-PCR to analyse viral latency and lytic transcripts. To perform viral progeny analysis and titration, the culture medium from infected THP-1 latency and reactivation models (7 days p.i.) was used to infect human fibroblasts; it was also checked for the presence of exosomes. For viral progeny analysis experiments, the Towne strain was also used. Our results showed that, while comparable TB40E DNA amounts were present in both latent and reactivation models at 30 h p.i., gradually increased quantities of viral DNA were only evident in the latter model at 4, 6, 7 days p.i.. The completion of the lytic cycle upon reactivation was also proved by the presence of HCMV lytic transcripts and an infectious viral yield at 7 days p.i. Our data demonstrate the effectiveness of THP-1 cells as a "switch" model for studying the mechanisms that regulate HCMV reactivation from latency. This system is able to provide adequate quantities of cells harbouring latent/reactivated virus, thereby overcoming the intrinsic difficulties connected to the ex vivo system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 57 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 22%
Student > Ph. D. Student 12 21%
Student > Master 11 19%
Researcher 8 14%
Student > Doctoral Student 2 3%
Other 4 7%
Unknown 8 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 28%
Agricultural and Biological Sciences 13 22%
Immunology and Microbiology 10 17%
Medicine and Dentistry 7 12%
Engineering 3 5%
Other 0 0%
Unknown 9 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2016.
All research outputs
#14,223,188
of 23,577,654 outputs
Outputs from Virology Journal
#1,482
of 3,119 outputs
Outputs of similar age
#173,019
of 317,452 outputs
Outputs of similar age from Virology Journal
#13
of 42 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,119 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.8. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,452 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.