↓ Skip to main content

Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts

Overview of attention for article published in BMC Bioinformatics, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts
Published in
BMC Bioinformatics, October 2016
DOI 10.1186/s12859-016-1223-2
Pubmed ID
Authors

Sujoy Roy, Brandon C. Curry, Behrouz Madahian, Ramin Homayouni

Abstract

The amount of scientific information about MicroRNAs (miRNAs) is growing exponentially, making it difficult for researchers to interpret experimental results. In this study, we present an automated text mining approach using Latent Semantic Indexing (LSI) for prioritization, clustering and functional annotation of miRNAs. For approximately 900 human miRNAs indexed in miRBase, text documents were created by concatenating titles and abstracts of MEDLINE citations which refer to the miRNAs. The documents were parsed and a weighted term-by-miRNA frequency matrix was created, which was subsequently factorized via singular value decomposition to extract pair-wise cosine values between the term (keyword) and miRNA vectors in reduced rank semantic space. LSI enables derivation of both explicit and implicit associations between entities based on word usage patterns. Using miR2Disease as a gold standard, we found that LSI identified keyword-to-miRNA relationships with high accuracy. In addition, we demonstrate that pair-wise associations between miRNAs can be used to group them into categories which are functionally aligned. Finally, term ranking by querying the LSI space with a group of miRNAs enabled annotation of the clusters with functionally related terms. LSI modeling of MEDLINE abstracts provides a robust and automated method for miRNA related knowledge discovery. The latest collection of miRNA abstracts and LSI model can be accessed through the web tool miRNA Literature Network (miRLiN) at http://bioinfo.memphis.edu/mirlin .

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 30%
Researcher 4 20%
Student > Master 3 15%
Student > Bachelor 2 10%
Other 2 10%
Other 0 0%
Unknown 3 15%
Readers by discipline Count As %
Computer Science 5 25%
Agricultural and Biological Sciences 4 20%
Psychology 2 10%
Biochemistry, Genetics and Molecular Biology 1 5%
Physics and Astronomy 1 5%
Other 5 25%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2016.
All research outputs
#18,478,448
of 22,896,955 outputs
Outputs from BMC Bioinformatics
#6,331
of 7,300 outputs
Outputs of similar age
#242,082
of 319,910 outputs
Outputs of similar age from BMC Bioinformatics
#104
of 132 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,300 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,910 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 132 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.