↓ Skip to main content

Spatial pattern of genetic diversity and selection in the MHC class II DRB of three Neotropical bat species

Overview of attention for article published in BMC Ecology and Evolution, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spatial pattern of genetic diversity and selection in the MHC class II DRB of three Neotropical bat species
Published in
BMC Ecology and Evolution, October 2016
DOI 10.1186/s12862-016-0802-1
Pubmed ID
Authors

Arielle Salmier, Benoit de Thoisy, Brigitte Crouau-Roy, Vincent Lacoste, Anne Lavergne

Abstract

Although bats are natural reservoirs of many pathogens, few studies have been conducted on the genetic variation and detection of selection in major histocompatibility complex (MHC) genes. These genes are critical for resistance and susceptibility to diseases, and host-pathogen interactions are major determinants of their extensive polymorphism. Here we examined spatial patterns of diversity of the expressed MHC class II DRB gene of three sympatric Neotropical bats, Carollia perspicillata and Desmodus rotundus (Phyllostomidae), and Molossus molossus (Molossidae), all of which use the same environments (e.g., forests, edge habitats, urban areas). Comparison with neutral marker (mtDNA D-loop) diversity was performed at the same time. Twenty-three DRB alleles were identified in 19 C. perspicillata, 30 alleles in 35 D. rotundus and 20 alleles in 28 M. molossus. The occurrence of multiple DRB loci was found for the two Phyllostomidae species. The DRB polymorphism was high in all sampling sites and different signatures of positive selection were detected depending on the environment. The patterns of DRB diversity were similar to those of neutral markers for C. perspicillata and M. molossus. In contrast, these patterns were different for D. rotundus for which a geographical structure was highlighted. A heterozygote advantage was also identified for this species. No recombination or gene conversion event was found and phylogenetic relationships showed a trans-species mode of evolution in the Phyllostomids. This study of MHC diversity demonstrated the strength of the environment and contrasting pathogen pressures in shaping DRB diversity. Differences between positively selected sites identified in bat species highlighted the potential role of gut microbiota in shaping immune responses. Furthermore, multiple geographic origins and/or population admixtures observed in C. perspicillata and M. molossus populations acted as an additional force in shaping DRB diversity. In contrast, DRB diversity of D. rotundus was shaped by environment rather than demographic history.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 63 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Researcher 12 19%
Student > Master 8 13%
Other 6 9%
Student > Bachelor 4 6%
Other 11 17%
Unknown 11 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 44%
Biochemistry, Genetics and Molecular Biology 10 16%
Environmental Science 8 13%
Immunology and Microbiology 3 5%
Medicine and Dentistry 1 2%
Other 1 2%
Unknown 13 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2016.
All research outputs
#22,759,802
of 25,374,647 outputs
Outputs from BMC Ecology and Evolution
#3,511
of 3,714 outputs
Outputs of similar age
#280,810
of 321,044 outputs
Outputs of similar age from BMC Ecology and Evolution
#85
of 90 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,044 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.