↓ Skip to main content

Impact of imposed exercise on energy intake in children at risk for overweight

Overview of attention for article published in Nutrition Journal, October 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
15 X users
facebook
3 Facebook pages

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
142 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of imposed exercise on energy intake in children at risk for overweight
Published in
Nutrition Journal, October 2016
DOI 10.1186/s12937-016-0206-5
Pubmed ID
Authors

S. Nicole Fearnbach, Travis D. Masterson, Haley A. Schlechter, Amanda J. Ross, Michael J. Rykaczewski, Eric Loken, Danielle S. Downs, David Thivel, Kathleen L. Keller

Abstract

Exercise not only has a direct effect on energy balance through energy expenditure (EE), but also has an indirect effect through its impact on energy intake (EI). This study examined the effects of acute exercise on daily ad libitum EI in children at risk for becoming overweight due to family history. Twenty healthy-weight children (ages 9-12 years, 12 male/8 female) with at least one overweight biological parent (body mass index ≥ 25 kg/m(2)) participated. Children reported to the laboratory for one baseline and two experimental visits (EX = exercise, SED = sedentary) each separated by 1 week in a randomized crossover design. Two hours into the EX day session, children exercised at 70 % estimated VO2max for 30 min on a cycle ergometer. Objective EI (kcal) was measured at a standard breakfast (~285 kcal) and ad libitum lunch, snack and dinner. Meals were identical on the EX and SED days. Activity-related EE (kcal) was estimated with accelerometers worn on the non-dominant wrist and ankle. Relative EI (kcal) was computed as the difference between Total EI and Activity-related EE for each testing day. Paired t-tests were performed to test differences in Total EI, Activity-related EE and Relative EI between the EX and SED days. Across all meals, Total EI was not statistically different between the EX and SED days (t = 1.8, p = 0.09). Activity-related EE was greater on the EX day compared to the SED day (t = 10.1, p < 0.001). By design, this difference was predominantly driven by activity during the morning (t = 20.4, p < 0.001). Because children consumed a similar number of kcal on each day, but had greater Activity-related EE on the EX day, Relative EI was lower (t = -5.15, p < 0.001) for the EX day (1636 ± 456 kcal) relative to the SED day (1862 ± 426 kcal). Imposed exercise was effective in reducing Relative EI compared to being sedentary. Morning exercise may help children at risk for becoming overweight to better regulate their energy balance within the course of a day.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 142 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 142 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 17 12%
Student > Ph. D. Student 15 11%
Researcher 15 11%
Student > Master 12 8%
Student > Doctoral Student 9 6%
Other 23 16%
Unknown 51 36%
Readers by discipline Count As %
Nursing and Health Professions 22 15%
Medicine and Dentistry 17 12%
Sports and Recreations 14 10%
Social Sciences 7 5%
Biochemistry, Genetics and Molecular Biology 6 4%
Other 21 15%
Unknown 55 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2017.
All research outputs
#3,392,720
of 25,399,318 outputs
Outputs from Nutrition Journal
#678
of 1,520 outputs
Outputs of similar age
#55,105
of 323,803 outputs
Outputs of similar age from Nutrition Journal
#10
of 21 outputs
Altmetric has tracked 25,399,318 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,520 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 39.6. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,803 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.