↓ Skip to main content

Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
98 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept
Published in
Biotechnology for Biofuels and Bioproducts, November 2016
DOI 10.1186/s13068-016-0656-1
Pubmed ID
Authors

Sheng Yang, Yue Zhang, Wen Yue, Wei Wang, Yun-Yan Wang, Tong-Qi Yuan, Run-Cang Sun

Abstract

Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid-steam-exploded corn stover, and consequently significantly improve the conversion of cellulose through enzymatic hydrolysis for biofuel production. The lignin fractions obtained as byproducts could be applied in high performance LPF resin preparation. The proposed model for the integral valorization of corn stover in this study is worth of popularization.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 98 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 98 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 13%
Researcher 12 12%
Student > Bachelor 9 9%
Student > Master 9 9%
Student > Doctoral Student 8 8%
Other 8 8%
Unknown 39 40%
Readers by discipline Count As %
Chemical Engineering 12 12%
Chemistry 11 11%
Agricultural and Biological Sciences 11 11%
Engineering 9 9%
Environmental Science 7 7%
Other 11 11%
Unknown 37 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2016.
All research outputs
#17,286,645
of 25,377,790 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#997
of 1,578 outputs
Outputs of similar age
#206,741
of 319,095 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#24
of 45 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,095 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.