↓ Skip to main content

Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.)

Overview of attention for article published in BMC Plant Biology, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative transcriptome profiling of the fertile and sterile flower buds of a dominant genic male sterile line in sesame (Sesamum indicum L.)
Published in
BMC Plant Biology, November 2016
DOI 10.1186/s12870-016-0934-x
Pubmed ID
Authors

Hongyan Liu, Mingpu Tan, Haijuan Yu, Liang Li, Fang Zhou, Minmin Yang, Ting Zhou, Yingzhong Zhao

Abstract

Sesame (Sesamum indicum L.) is a globally important oilseed crop with highly-valued oil. Strong hybrid vigor is frequently observed within this crop, which can be exploited by the means of genic male sterility (GMS). We have previously developed a dominant GMS (DGMS) line W1098A that has great potential for the breeding of F1 hybrids. Although it has been genetically and anatomically characterized, the underlying molecular mechanism for male sterility remains unclear and therefore limits the full utilization of such GMS line. In this study, RNA-seq based transcriptome profiling was carried out in two near-isogenic DGMS lines (W1098A and its fertile counterpart, W1098B) to identify differentially expressed genes (DEGs) related to male sterility. A total of 1,502 significant DEGs were detected, among which 751 were up-regulated and 751 were down-regulated in sterile flower buds. A number of DEGs were implicated in both ethylene and JA synthesis & signaling pathway; the expression of which were either up- or down-regulated in the sterile buds, respectively. Moreover, the majority of NAC and WRKY transcription factors implicated from the DEGs were up-regulated in sterile buds. By querying the Plant Male Reproduction Database, 49 sesame homologous genes were obtained; several of these encode transcription factors (bHLH089, MYB99, and AMS) that showed reduced expression in sterile buds, thus implying the possible role in specifying or determining tapetal fate and development. The predicted effect of allelic variants on the function of their corresponding DEGs highlighted several Insertions/Deletions (InDels), which might be responsible for the phenotype of sterility/fertility in DGMS lines. The present comparative transcriptome study suggested that both hormone signaling pathway and transcription factors control the male sterility of DGMS in sesame. The results also revealed that several InDels located in DEGs prone to cause loss of function, which might contribute to male sterility. These findings provide valuable genomic resources for a deeper insight into the molecular mechanism underlying DGMS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Student > Master 4 15%
Student > Ph. D. Student 4 15%
Professor > Associate Professor 2 7%
Student > Doctoral Student 2 7%
Other 3 11%
Unknown 7 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 52%
Biochemistry, Genetics and Molecular Biology 4 15%
Nursing and Health Professions 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Unknown 7 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2016.
All research outputs
#20,353,668
of 22,901,818 outputs
Outputs from BMC Plant Biology
#2,535
of 3,268 outputs
Outputs of similar age
#270,515
of 312,770 outputs
Outputs of similar age from BMC Plant Biology
#23
of 33 outputs
Altmetric has tracked 22,901,818 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,268 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,770 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.