↓ Skip to main content

Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China

Overview of attention for article published in BMC Microbiology, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
1 blog
twitter
3 tweeters

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China
Published in
BMC Microbiology, November 2016
DOI 10.1186/s12866-016-0892-3
Pubmed ID
Authors

Jing Yan Tang, Jing Ma, Xue Dong Li, Yan Hong Li

Abstract

Previous studies on the bacteria associated with the bryophytes showed that there were abundant bacteria inhabited in/on these hosts. However, the type of bacteria and whether these discriminate between different bryophytes based on a particular factor remains largely unknown. This study was designed to analyze the biodiversity and community of the bacteria associated with ten liverworts and ten mosses using Illumina-sequencing techniques based on bacterial 16S rRNA gene. A total of 125,762 high quality sequences and 437 OTUs were obtained from twenty bryophytes. Generally, there were no obvious differences between the richness of bacteria associated with liverworts and mosses; however, the diversity was significantly higher in liverworts than in mosses. The taxonomic analyses showed that there were abundant bacteria inhabited with each bryophyte and those primarily detected in all samples were within the phyla Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Armatimonadetes and Planctomycetes. In addition, bacteria assigned to Chloroflexi, Fibrobacteres, Gemmatimonadetes, Chlamydiae, group of TM6 and WCHB1-60 also appeared in part of the bryophytes. The assigned bacteria included those adapted to aquatic, anaerobic and even extreme drought environments, which is consistent with the bryophyte transition from aquatic to terrestrial conditions. Of them, approximately 10 recognized genera were shared by all the samples in a higher proportion, such as Burkholderia, Novosphingobium, Mucilaginibacter, Sorangium, Frankia, Frondihatitans, Haliangium, Rhizobacter, Granulicella and Hafnia, and 11 unclassified genera were also detected in all samples, which exhibited that large amounts of unclassified bacteria could interact with the bryophytes. The Heatmap and Principle Coordinate Analyses showed that bacteria associated with six mosses displayed a higher community similarity. Notably, the bacteria associated with another four mosses exhibited higher similarity with the ten liverworts. The result of further analysis of the bacterial community in different bryophytes revealed that the phylogeny of hosts might portray a strong influence on the associated bacterial community and that niche also played important roles when the hosts were phylogenetically more similar. Further studies are needed to confirm the role of phylogeny on bacterial communities and determine the level of influence on predicting which bacteria is associated with the host.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 16%
Student > Master 5 16%
Student > Doctoral Student 4 13%
Student > Bachelor 4 13%
Researcher 3 9%
Other 6 19%
Unknown 5 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 47%
Biochemistry, Genetics and Molecular Biology 4 13%
Environmental Science 4 13%
Unknown 9 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2017.
All research outputs
#1,487,839
of 11,340,430 outputs
Outputs from BMC Microbiology
#164
of 1,600 outputs
Outputs of similar age
#58,503
of 320,650 outputs
Outputs of similar age from BMC Microbiology
#8
of 56 outputs
Altmetric has tracked 11,340,430 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,600 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,650 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.