↓ Skip to main content

Ancient recombination events and the origins of hepatitis E virus

Overview of attention for article published in BMC Ecology and Evolution, October 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ancient recombination events and the origins of hepatitis E virus
Published in
BMC Ecology and Evolution, October 2016
DOI 10.1186/s12862-016-0785-y
Pubmed ID
Authors

Andrew G. Kelly, Natalie E. Netzler, Peter A. White

Abstract

Hepatitis E virus (HEV) is an enteric, single-stranded, positive sense RNA virus and a significant etiological agent of hepatitis, causing sporadic infections and outbreaks globally. Tracing the evolutionary ancestry of HEV has proved difficult since its identification in 1992, it has been reclassified several times, and confusion remains surrounding its origins and ancestry. To reveal close protein relatives of the Hepeviridae family, similarity searching of the GenBank database was carried out using a complete Orthohepevirus A, HEV genotype I (GI) ORF1 protein sequence and individual proteins. The closest non-Hepeviridae homologues to the HEV ORF1 encoded polyprotein were found to be those from the lepidopteran-infecting Alphatetraviridae family members. A consistent relationship to this was found using a phylogenetic approach; the Hepeviridae RdRp clustered with those of the Alphatetraviridae and Benyviridae families. This puts the Hepeviridae ORF1 region within the "Alpha-like" super-group of viruses. In marked contrast, the HEV GI capsid was found to be most closely related to the chicken astrovirus capsid, with phylogenetic trees clustering the Hepeviridae capsid together with those from the Astroviridae family, and surprisingly within the "Picorna-like" supergroup. These results indicate an ancient recombination event has occurred at the junction of the non-structural and structure encoding regions, which led to the emergence of the entire Hepeviridae family. The Astroviridae capsid is also closely related to the Tymoviridae family of monopartite, T = 3 icosahedral plant viruses, whilst its non-structural region is related to viruses of the Potyviridae; a large family of plant-infecting viruses with a flexible filamentous rod-shaped virion. Thus, we identified a separate inter-viral family recombination event, again at the non-structural/structural junction, which likely led to the creation of the Astroviridae. In summary, we have shown that new viral families have been created though recombination at the junction of the genome that encodes non-structural and structural proteins, and such recombination events are implicated in the genesis of important human pathogens; HEV, astrovirus and rubella virus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 25%
Researcher 9 16%
Student > Master 8 14%
Student > Bachelor 5 9%
Student > Doctoral Student 4 7%
Other 7 12%
Unknown 10 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 30%
Agricultural and Biological Sciences 13 23%
Immunology and Microbiology 5 9%
Veterinary Science and Veterinary Medicine 3 5%
Medicine and Dentistry 3 5%
Other 4 7%
Unknown 12 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2020.
All research outputs
#2,614,484
of 25,373,627 outputs
Outputs from BMC Ecology and Evolution
#683
of 3,714 outputs
Outputs of similar age
#43,493
of 326,099 outputs
Outputs of similar age from BMC Ecology and Evolution
#22
of 91 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,099 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 91 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.