↓ Skip to main content

Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, November 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
10 X users
facebook
1 Facebook page

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI
Published in
Critical Reviews in Diagnostic Imaging, November 2016
DOI 10.1186/s12968-016-0302-x
Pubmed ID
Authors

Sebastian Weingärtner, Nadja M. Meßner, Johannes Budjan, Dirk Loßnitzer, Uwe Mattler, Theano Papavassiliu, Frank G. Zöllner, Lothar R. Schad

Abstract

Myocardial T1-mapping recently emerged as a promising quantitative method for non-invasive tissue characterization in numerous cardiomyopathies. Commonly performed with an inversion-recovery (IR) magnetization preparation at 1.5T, the application at 3T has gained due to increased quantification precision. Alternatively, saturation-recovery (SR) T1-mapping has recently been introduced at 1.5T for improved accuracy. Thus, the purpose of this study is to investigate the robustness and precision of SR T1-mapping at 3T and to establish accurate reference values for native T1-times and extracellular volume fraction (ECV) of healthy myocardium. Balanced Steady-State Free-Precession (bSSFP) Saturation-Pulse Prepared Heart-rate independent Inversion-REcovery (SAPPHIRE) and Saturation-recovery Single-SHot Acquisition (SASHA) T1-mapping were compared with the Modified Look-Locker inversion recovery (MOLLI) sequence at 3T. Accuracy and precision were studied in phantom. Native and post-contrast T1-times and regional ECV were determined in 20 healthy subjects (10 men, 27 ± 5 years). Subjective image quality, susceptibility artifact rating, in-vivo precision and reproducibility were analyzed. SR T1-mapping showed <4 % deviation from the spin-echo reference in phantom in the range of T1 = 100-2300 ms. The average quality and artifact scores of the T1-mapping methods were: MOLLI:3.4/3.6, SAPPHIRE:3.1/3.4, SASHA:2.9/3.2; (1: poor - 4: excellent/1: strong - 4: none). SAPPHIRE and SASHA yielded significantly higher T1-times (SAPPHIRE: 1578 ± 42 ms, SASHA: 1523 ± 46 ms), in-vivo T1-time variation (SAPPHIRE: 60.1 ± 8.7 ms, SASHA: 70.0 ± 9.3 ms) and lower ECV-values (SAPPHIRE: 0.20 ± 0.02, SASHA: 0.21 ± 0.03) compared with MOLLI (T1: 1181 ± 47 ms, ECV: 0.26 ± 0.03, Precision: 53.7 ± 8.1 ms). No significant difference was found in the inter-subject variability of T1-times or ECV-values (T1: p = 0.90, ECV: p = 0.78), the observer agreement (inter: p > 0.19; intra: p > 0.09) or consistency (inter: p > 0.07; intra: p > 0.17) between the three methods. Saturation-recovery T1-mapping at 3T yields higher accuracy, comparable inter-subject, inter- and intra-observer variability and less than 30 % precision-loss compared to MOLLI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Student > Master 3 9%
Student > Postgraduate 3 9%
Researcher 3 9%
Other 2 6%
Other 4 13%
Unknown 11 34%
Readers by discipline Count As %
Medicine and Dentistry 8 25%
Physics and Astronomy 4 13%
Engineering 3 9%
Nursing and Health Professions 2 6%
Neuroscience 2 6%
Other 2 6%
Unknown 11 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2016.
All research outputs
#6,442,821
of 25,711,518 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#432
of 1,386 outputs
Outputs of similar age
#104,614
of 417,986 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#11
of 31 outputs
Altmetric has tracked 25,711,518 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 1,386 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 417,986 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.