↓ Skip to main content

Loss of porin function in dopaminergic neurons of Drosophila is suppressed by Buffy

Overview of attention for article published in Journal of Biomedical Science, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Loss of porin function in dopaminergic neurons of Drosophila is suppressed by Buffy
Published in
Journal of Biomedical Science, November 2016
DOI 10.1186/s12929-016-0300-1
Pubmed ID
Authors

P. Githure M’Angale, Brian E. Staveley

Abstract

Mitochondrial porin, also known as the voltage-dependent anion channel (VDAC), is a multi-functional channel protein that shuttles metabolites between the mitochondria and the cytosol and implicated in cellular life and death decisions. The inhibition of porin under the control of neuronal Ddc-Gal4 result in short lifespan and in an age-dependent loss in locomotor function, phenotypes that are strongly associated with Drosophila models of Parkinson disease. Loss of porin function was achieved through exploitation of RNA interference while derivative lines were generated by homologous recombination and tested by PCR. The UAS/Gal4 expression system was exploited with directed expression in neurons achieved with the use of the Dopa decarboxylase and in the developing eye with the Glass multiple reporter transgenes. Statistical analyses for ageing assay employed Log rank (Mantel-Cox) test, climbing indices were fitted with a non-linear curve and confidence intervals compared at 95%. Biometric analysis of the eye phenotypes was obtained by unpaired student T-test. The expression of α-synuclein in neuronal populations that include dopamine producing neurons under the control of Ddc-Gal4 produces a robust Parkinson disease model, and results in severely reduced lifespan and locomotor dysfunction. In addition, the porin-induced phenotypes are greatly suppressed when the pro-survival Bcl-2 homologue Buffy is overexpressed in these neurons and in the developing eye adding to the cellular advantages of altered expression of this anti-apoptotic gene. When we co-expressed α-synuclein along with porin, it results in a decrease in lifespan and impaired climbing ability. This enhancement of the α-synuclein-induced phenotypes observed in neurons was demonstrated in the neuron rich eye, where the simultaneous co-expression of porin-RNAi and α-synuclein resulted in an enhanced eye phenotype, marked by reduced number of ommatidia and increased disarray of the ommatidia. The inhibition of porin in dopaminergic neurons among others result in reduced lifespan and age-dependent loss in climbing ability, phenotypes that are suppressed by the overexpression of the sole pro-survival Bcl-2 homologue Buffy. The inhibition of porin phenocopies Parkinson disease phenotypes in Drosophila, while the overexpression of Buffy can counteract these phenotypes to improve the overall "healthspan" of the organism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Student > Bachelor 5 22%
Librarian 4 17%
Student > Master 3 13%
Lecturer 1 4%
Other 2 9%
Unknown 3 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 22%
Biochemistry, Genetics and Molecular Biology 4 17%
Medicine and Dentistry 4 17%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Computer Science 1 4%
Other 4 17%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 December 2016.
All research outputs
#16,720,137
of 25,371,288 outputs
Outputs from Journal of Biomedical Science
#709
of 1,100 outputs
Outputs of similar age
#248,990
of 415,325 outputs
Outputs of similar age from Journal of Biomedical Science
#10
of 16 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,100 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,325 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.