↓ Skip to main content

Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism

Overview of attention for article published in Molecular Autism, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

blogs
3 blogs
twitter
14 X users
facebook
2 Facebook pages
googleplus
1 Google+ user

Citations

dimensions_citation
179 Dimensions

Readers on

mendeley
288 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism
Published in
Molecular Autism, November 2016
DOI 10.1186/s13229-016-0109-5
Pubmed ID
Authors

Federica Gevi, Lello Zolla, Stefano Gabriele, Antonio M. Persico

Abstract

Autism spectrum disorder (ASD) is still diagnosed through behavioral observation, due to a lack of laboratory biomarkers, which could greatly aid clinicians in providing earlier and more reliable diagnoses. Metabolomics on human biofluids provides a sensitive tool to identify metabolite profiles potentially usable as biomarkers for ASD. Initial metabolomic studies, analyzing urines and plasma of ASD and control individuals, suggested that autistic patients may share some metabolic abnormalities, despite several inconsistencies stemming from differences in technology, ethnicity, age range, and definition of "control" status. ASD-specific urinary metabolomic patterns were explored at an early age in 30 ASD children and 30 matched controls (age range 2-7, M:F = 22:8) using hydrophilic interaction chromatography (HILIC)-UHPLC and mass spectrometry, a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. Urinary metabolites displaying the largest differences between young ASD and control children belonged to the tryptophan and purine metabolic pathways. Also, vitamin B6, riboflavin, phenylalanine-tyrosine-tryptophan biosynthesis, pantothenate and CoA, and pyrimidine metabolism differed significantly. ASD children preferentially transform tryptophan into xanthurenic acid and quinolinic acid (two catabolites of the kynurenine pathway), at the expense of kynurenic acid and especially of melatonin. Also, the gut microbiome contributes to altered tryptophan metabolism, yielding increased levels of indolyl 3-acetic acid and indolyl lactate. The metabolic pathways most distinctive of young Italian autistic children largely overlap with those found in rodent models of ASD following maternal immune activation or genetic manipulations. These results are consistent with the proposal of a purine-driven cell danger response, accompanied by overproduction of epileptogenic and excitotoxic quinolinic acid, large reductions in melatonin synthesis, and gut dysbiosis. These metabolic abnormalities could underlie several comorbidities frequently associated to ASD, such as seizures, sleep disorders, and gastrointestinal symptoms, and could contribute to autism severity. Their diagnostic sensitivity, disease-specificity, and interethnic variability will merit further investigation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 288 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 288 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 39 14%
Student > Ph. D. Student 37 13%
Student > Master 34 12%
Student > Bachelor 25 9%
Student > Doctoral Student 19 7%
Other 55 19%
Unknown 79 27%
Readers by discipline Count As %
Medicine and Dentistry 47 16%
Biochemistry, Genetics and Molecular Biology 32 11%
Neuroscience 23 8%
Agricultural and Biological Sciences 21 7%
Psychology 16 6%
Other 56 19%
Unknown 93 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 November 2022.
All research outputs
#1,528,877
of 25,654,806 outputs
Outputs from Molecular Autism
#148
of 722 outputs
Outputs of similar age
#29,647
of 417,084 outputs
Outputs of similar age from Molecular Autism
#5
of 11 outputs
Altmetric has tracked 25,654,806 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 722 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 417,084 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.