↓ Skip to main content

A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
92 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin
Published in
Biotechnology for Biofuels and Bioproducts, November 2016
DOI 10.1186/s13068-016-0674-z
Pubmed ID
Authors

Johan Larsbrink, Yongtao Zhu, Sampada S. Kharade, Kurt J. Kwiatkowski, Vincent G. H. Eijsink, Nicole M. Koropatkin, Mark J. McBride, Phillip B. Pope

Abstract

Chitin is the second most abundant polysaccharide on earth and as such a great target for bioconversion applications. The phylum Bacteroidetes is one of nature's most ubiquitous bacterial lineages and is essential in the global carbon cycle with many members being highly efficient degraders of complex carbohydrates. However, despite their specialist reputation in carbohydrate conversion, mechanisms for degrading recalcitrant crystalline polysaccharides such as chitin and cellulose are hitherto unknown. Here we describe a complete functional analysis of a novel polysaccharide utilization locus (PUL) in the soil Bacteroidete Flavobacterium johnsoniae, tailored for conversion of chitin. The F. johnsoniae chitin utilization locus (ChiUL) consists of eleven contiguous genes encoding carbohydrate capture and transport proteins, enzymes, and a two-component sensor-regulator system. The key chitinase (ChiA) encoded by ChiUL is atypical in terms of known Bacteroidetes-affiliated PUL mechanisms as it is not anchored to the outer cell membrane and consists of multiple catalytic domains. We demonstrate how the extraordinary hydrolytic efficiency of ChiA derives from synergy between its multiple chitinolytic (endo- and exo-acting) and previously unidentified chitin-binding domains. Reverse genetics show that ChiA and PUL-encoded proteins involved in sugar binding, import, and chitin sensing are essential for efficient chitin utilization. Surprisingly, the ChiUL encodes two pairs of SusC/D-like outer membrane proteins. Ligand-binding and structural studies revealed functional differences between the two SusD-like proteins that enhance scavenging of chitin from the environment. The combined results from this study provide insight into the mechanisms employed by Bacteroidetes to degrade recalcitrant polysaccharides and reveal important novel aspects of the PUL paradigm. By combining reverse genetics to map essential PUL genes, structural studies on outer membrane chitin-binding proteins, and enzymology, we provide insight into the mechanisms employed by Bacteroidetes to degrade recalcitrant polysaccharides and introduce a new saccharolytic mechanism used by the phylum Bacteroidetes. The presented discovery and analysis of the ChiUL will greatly benefit future enzyme discovery efforts as well as studies regarding enzymatic intramolecular synergism.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 92 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 92 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 27%
Researcher 16 17%
Student > Master 13 14%
Student > Bachelor 7 8%
Student > Doctoral Student 6 7%
Other 10 11%
Unknown 15 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 29 32%
Agricultural and Biological Sciences 28 30%
Immunology and Microbiology 4 4%
Chemistry 4 4%
Environmental Science 3 3%
Other 6 7%
Unknown 18 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2016.
All research outputs
#17,285,668
of 25,374,647 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#997
of 1,578 outputs
Outputs of similar age
#261,872
of 417,097 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#27
of 52 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 417,097 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.