↓ Skip to main content

Intravascular versus surface cooling for targeted temperature management after out-of-hospital cardiac arrest – an analysis of the TTM trial data

Overview of attention for article published in Critical Care, November 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
65 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
128 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Intravascular versus surface cooling for targeted temperature management after out-of-hospital cardiac arrest – an analysis of the TTM trial data
Published in
Critical Care, November 2016
DOI 10.1186/s13054-016-1552-6
Pubmed ID
Authors

Guy W. Glover, Richard M. Thomas, George Vamvakas, Nawaf Al-Subaie, Jules Cranshaw, Andrew Walden, Matthew P. Wise, Marlies Ostermann, Emma Thomas-Jones, Tobias Cronberg, David Erlinge, Yvan Gasche, Christian Hassager, Janneke Horn, Jesper Kjaergaard, Michael Kuiper, Tommaso Pellis, Pascal Stammet, Michael Wanscher, Jørn Wetterslev, Hans Friberg, Niklas Nielsen

Abstract

Targeted temperature management is recommended after out-of-hospital cardiac arrest and may be achieved using a variety of cooling devices. This study was conducted to explore the performance and outcomes for intravascular versus surface devices for targeted temperature management after out-of-hospital cardiac arrest. A retrospective analysis of data from the Targeted Temperature Management trial. N = 934. A total of 240 patients (26%) managed with intravascular versus 694 (74%) with surface devices. Devices were assessed for speed and precision during the induction, maintenance and rewarming phases in addition to adverse events. All-cause mortality, as well as a composite of poor neurological function or death, as evaluated by the Cerebral Performance Category and modified Rankin scale were analysed. For patients managed at 33 °C there was no difference between intravascular and surface groups in the median time taken to achieve target temperature (210 [interquartile range (IQR) 180] minutes vs. 240 [IQR 180] minutes, p = 0.58), maximum rate of cooling (1.0 [0.7] vs. 1.0 [0.9] °C/hr, p = 0.44), the number of patients who reached target temperature (within 4 hours (65% vs. 60%, p = 0.30); or ever (100% vs. 97%, p = 0.47), or episodes of overcooling (8% vs. 34%, p = 0.15). In the maintenance phase, cumulative temperature deviation (median 3.2 [IQR 5.0] °C hr vs. 9.3 [IQR 8.0] °C hr, p = <0.001), number of patients ever out of range (57.0% vs. 91.5%, p = 0.006) and median time out of range (1 [IQR 4.0] hours vs. 8.0 [IQR 9.0] hours, p = <0.001) were all significantly greater in the surface group although there was no difference in the occurrence of pyrexia. Adverse events were not different between intravascular and surface groups. There was no statistically significant difference in mortality (intravascular 46.3% vs. surface 50.0%; p = 0.32), Cerebral Performance Category scale 3-5 (49.0% vs. 54.3%; p = 0.18) or modified Rankin scale 4-6 (49.0% vs. 53.0%; p = 0.48). Intravascular and surface cooling was equally effective during induction of mild hypothermia. However, surface cooling was associated with less precision during the maintenance phase. There was no difference in adverse events, mortality or poor neurological outcomes between patients treated with intravascular and surface cooling devices. TTM trial ClinicalTrials.gov number https://clinicaltrials.gov/ct2/show/NCT01020916 NCT01020916; 25 November 2009.

X Demographics

X Demographics

The data shown below were collected from the profiles of 65 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 128 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 127 99%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 14 11%
Other 13 10%
Researcher 13 10%
Student > Master 12 9%
Student > Doctoral Student 9 7%
Other 28 22%
Unknown 39 30%
Readers by discipline Count As %
Medicine and Dentistry 59 46%
Nursing and Health Professions 14 11%
Engineering 3 2%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Agricultural and Biological Sciences 2 2%
Other 7 5%
Unknown 41 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 41. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2018.
All research outputs
#1,001,446
of 25,374,917 outputs
Outputs from Critical Care
#774
of 6,554 outputs
Outputs of similar age
#20,118
of 416,643 outputs
Outputs of similar age from Critical Care
#13
of 94 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,554 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,643 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.