↓ Skip to main content

Impact of a web-based tool (WebCONSORT) to improve the reporting of randomised trials: results of a randomised controlled trial

Overview of attention for article published in BMC Medicine, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
56 X users
facebook
1 Facebook page

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of a web-based tool (WebCONSORT) to improve the reporting of randomised trials: results of a randomised controlled trial
Published in
BMC Medicine, November 2016
DOI 10.1186/s12916-016-0736-x
Pubmed ID
Authors

Sally Hopewell, Isabelle Boutron, Douglas G. Altman, Ginny Barbour, David Moher, Victor Montori, David Schriger, Jonathan Cook, Stephen Gerry, Omar Omar, Peter Dutton, Corran Roberts, Eleni Frangou, Lei Clifton, Virginia Chiocchia, Ines Rombach, Karolina Wartolowska, Philippe Ravaud

Abstract

The CONSORT Statement is an evidence-informed guideline for reporting randomised controlled trials. A number of extensions have been developed that specify additional information to report for more complex trials. The aim of this study was to evaluate the impact of using a simple web-based tool (WebCONSORT, which incorporates a number of different CONSORT extensions) on the completeness of reporting of randomised trials published in biomedical publications. We conducted a parallel group randomised trial. Journals which endorsed the CONSORT Statement (i.e. referred to it in the Instruction to Authors) but do not actively implement it (i.e. require authors to submit a completed CONSORT checklist) were invited to participate. Authors of randomised trials were requested by the editor to use the web-based tool at the manuscript revision stage. Authors registering to use the tool were randomised (centralised computer generated) to WebCONSORT or control. In the WebCONSORT group, they had access to a tool allowing them to combine the different CONSORT extensions relevant to their trial and generate a customised checklist and flow diagram that they must submit to the editor. In the control group, authors had only access to a CONSORT flow diagram generator. Authors, journal editors, and outcome assessors were blinded to the allocation. The primary outcome was the proportion of CONSORT items (main and extensions) reported in each article post revision. A total of 46 journals actively recruited authors into the trial (25 March 2013 to 22 September 2015); 324 author manuscripts were randomised (WebCONSORT n = 166; control n = 158), of which 197 were reports of randomised trials (n = 94; n = 103). Over a third (39%; n = 127) of registered manuscripts were excluded from the analysis, mainly because the reported study was not a randomised trial. Of those included in the analysis, the most common CONSORT extensions selected were non-pharmacologic (n = 43; n = 50), pragmatic (n = 20; n = 16) and cluster (n = 10; n = 9). In a quarter of manuscripts, authors either wrongly selected an extension or failed to select the right extension when registering their manuscript on the WebCONSORT study site. Overall, there was no important difference in the overall mean score between WebCONSORT (mean score 0.51) and control (0.47) in the proportion of CONSORT and CONSORT extension items reported pertaining to a given study (mean difference, 0.04; 95% CI -0.02 to 0.10). This study failed to show a beneficial effect of a customised web-based CONSORT checklist to help authors prepare more complete trial reports. However, the exclusion of a large number of inappropriately registered manuscripts meant we had less precision than anticipated to detect a difference. Better education is needed, earlier in the publication process, for both authors and journal editorial staff on when and how to implement CONSORT and, in particular, CONSORT-related extensions. ClinicalTrials.gov: NCT01891448 [registered 24 May 2013].

X Demographics

X Demographics

The data shown below were collected from the profiles of 56 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 25%
Student > Master 7 13%
Student > Ph. D. Student 7 13%
Professor > Associate Professor 5 9%
Student > Doctoral Student 4 7%
Other 11 20%
Unknown 8 14%
Readers by discipline Count As %
Medicine and Dentistry 27 48%
Nursing and Health Professions 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Mathematics 1 2%
Unspecified 1 2%
Other 7 13%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 30. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 May 2023.
All research outputs
#1,255,865
of 24,814,419 outputs
Outputs from BMC Medicine
#869
of 3,852 outputs
Outputs of similar age
#25,631
of 427,639 outputs
Outputs of similar age from BMC Medicine
#18
of 68 outputs
Altmetric has tracked 24,814,419 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,852 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 45.1. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 427,639 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.