↓ Skip to main content

Milk yield responses to changes in milking frequency during early lactation are associated with coordinated and persistent changes in mammary gene expression

Overview of attention for article published in BMC Genomics, May 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Milk yield responses to changes in milking frequency during early lactation are associated with coordinated and persistent changes in mammary gene expression
Published in
BMC Genomics, May 2013
DOI 10.1186/1471-2164-14-296
Pubmed ID
Authors

Emma H Wall, Jeffrey P Bond, Thomas B McFadden

Abstract

BACKGROUND: The lactating mammary gland responds to changes in milking frequency by modulating milk production. This response is locally regulated and, in dairy cows, the udder is particularly sensitive during early lactation. Relative to cows milked twice-daily throughout lactation, those milked four-times-daily for just the first 3 weeks of lactation produce more milk throughout that lactation. We hypothesized that the milk yield response would be associated with increased mammary cell turnover and changes in gene expression during frequent milking and persisting thereafter. Cows were assigned to unilateral frequent milking (UFM; left udder halves milked twice-daily; right udder halves milked four-times daily) on days 1 to 21 of lactation, followed by twice-daily milking for the remainder of lactation. Relative to udder halves milked twice-daily, those milked four-times produced more milk during UFM; the difference in milk yield declined acutely upon cessation of UFM after day 21, but remained significantly elevated thereafter. We obtained mammary biopsies from both udder halves on days 21, 23, and 40 of lactation. RESULTS: Mammary cell proliferation and apoptosis were not affected by milking frequency. We identified 75 genes that were differentially expressed between paired udder halves on day 21 but exhibited a reversal of differential expression on day 23. Among those genes, we identified four clusters characterized by similar temporal patterns of differential expression. Two clusters (11 genes) were positively correlated with changes in milk yield and were differentially expressed on day 21 of lactation only, indicating involvement in the initial milk yield response. Two other clusters (64 genes) were negatively correlated with changes in milk yield. Twenty-nine of the 75 genes were also differentially expressed on day 40 of lactation. CONCLUSIONS: Changes in milking frequency during early lactation did not alter mammary cell population dynamics, but were associated with coordinated changes in mammary expression of at least 75 genes. Twenty-nine of those genes were differentially expressed 19 days after cessation of treatment, implicating them in the persistent milk yield response. We conclude that we have identified a novel transcriptional signature that may mediate the adaptive response to changes in milking frequency.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 7%
Unknown 27 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 21%
Student > Ph. D. Student 5 17%
Professor > Associate Professor 3 10%
Other 2 7%
Student > Master 2 7%
Other 4 14%
Unknown 7 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 52%
Biochemistry, Genetics and Molecular Biology 3 10%
Veterinary Science and Veterinary Medicine 2 7%
Nursing and Health Professions 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 0 0%
Unknown 7 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 May 2013.
All research outputs
#14,638,545
of 23,881,329 outputs
Outputs from BMC Genomics
#5,518
of 10,793 outputs
Outputs of similar age
#108,673
of 194,590 outputs
Outputs of similar age from BMC Genomics
#56
of 116 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,793 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 194,590 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.