↓ Skip to main content

Stereoscopic X-ray imaging, cone beam CT, and couch positioning in stereotactic radiotherapy of intracranial tumors: preliminary results from a cross-modality pilot installation

Overview of attention for article published in Radiation Oncology, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stereoscopic X-ray imaging, cone beam CT, and couch positioning in stereotactic radiotherapy of intracranial tumors: preliminary results from a cross-modality pilot installation
Published in
Radiation Oncology, December 2016
DOI 10.1186/s13014-016-0735-2
Pubmed ID
Authors

Barbara Zollner, Christian Heinz, Sabrina Pitzler, Farkhad Manapov, Steffi Kantz, Maya Christine Rottler, Maximilian Niyazi, Ute Ganswindt, Claus Belka, Hendrik Ballhausen

Abstract

To assess the accuracy and precision of a fully integrated pilot installation of stereoscopic X-ray imaging and kV-CBCT for automatic couch positioning in stereotactic radiotherapy of intracranial tumors. Positioning errors as detected by stereoscopic X-ray imaging are compared to those by kV-CBCT (i.e. the accuracy of the new method is verified by the established method), and repeated X-ray images are compared (i.e. the precision of new method is determined intra-modally). Preliminary results are reported from a study with 32 patients with intracranial tumors. Patients were treated with stereotactic radiotherapy guided by stereoscopic X-ray imaging and kV-CBCT. Patient positioning was automatically corrected by a robotic couch. Cross-modal discrepancies in position detection were measured (N = 42). Intra-modal improvements after correction and re-verification by stereoscopic X-ray imaging were measured (N = 70). The accuracy and precision of stereoscopic X-ray imaging and the accuracy and precision of CBCT were confirmed in phantom measurements (N = 12 shifts of a ball bearing phantom, N = 24 shifts of a head phantom). After correction based on stereoscopic X-ray imaging 95% of residual mean errors were below 0.4, 0.4, 0.5, and 0.7 mm (lateral, longitudinal, vertical, radial, respectively). Stereoscopic X-ray imaging and CBCT were in close agreement with an average discrepancy of 0.1, 0.5, 0.3 and 0.8 mm, respectively. 95% of discrepancies were below 0.8, 1.2, 1.0, and 1.4 mm, respectively. After correction and re-verification by stereoscopic X-ray imaging, the remaining intra-modal residual error was consistent with zero (p = 0.31, p = 0.48, p = 0.81 in lateral, longitudinal, and vertical direction; p-values from two-tailed t-test). The inherent technical accuracy and precision of stereoscopic X-ray imaging and the accuracy and precision of CBCT were found to be of the order of 0.1 mm in controlled phantom settings. In a routine clinical setting, both stereoscopic X-ray imaging and CBCT were able to reduce positioning errors by an order of magnitude. The end-to-end precision of the system, measured from the discrepancy (mean) between ExacTrac and CBCT, in a clinical setting seems to be about 0.8 mm radially, including couch positioning. The precision (measured from repeatability of ExacTrac, intra-modal) was found to be about 0.7 mm radially in a clinical setting.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 17%
Other 4 9%
Student > Ph. D. Student 4 9%
Student > Bachelor 4 9%
Student > Doctoral Student 3 7%
Other 10 22%
Unknown 13 28%
Readers by discipline Count As %
Medicine and Dentistry 15 33%
Physics and Astronomy 6 13%
Engineering 3 7%
Nursing and Health Professions 2 4%
Arts and Humanities 1 2%
Other 3 7%
Unknown 16 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2016.
All research outputs
#20,359,475
of 22,908,162 outputs
Outputs from Radiation Oncology
#1,680
of 2,060 outputs
Outputs of similar age
#353,668
of 419,655 outputs
Outputs of similar age from Radiation Oncology
#22
of 32 outputs
Altmetric has tracked 22,908,162 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,060 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,655 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.