↓ Skip to main content

Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice

Overview of attention for article published in Gut Pathogens, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

blogs
1 blog
twitter
5 X users

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice
Published in
Gut Pathogens, December 2016
DOI 10.1186/s13099-016-0149-6
Pubmed ID
Authors

Janelle A. Jiminez, Trina C. Uwiera, D. Wade Abbott, Richard R. E. Uwiera, G. Douglas Inglis

Abstract

Identifying the connection among diet, the intestinal microbiome, and host health is currently an area of intensive research, but the potential of dietary fiber (DF) consumption to ameliorate intestinal inflammation has not been extensively studied. We examined the impacts of the DFs, wheat bran (WB) and resistant starch (RS) on host enteric health. A murine model of acute Th1/Th17 colitis (i.e. incited by Citrobacter rodentium) was used. Diets enriched with RS increased weight gain in mice inoculated with C. rodentium compared to mice consuming a conventional control (CN) diet. Short-chain fatty acid (SCFA) quantities in the cecum and distal colon were higher in mice consuming DFs, and these mice exhibited higher butyrate concentrations in the distal colon during inflammation. Histopathologic scores of inflammation in the proximal colon on day 14 post-inoculation (p.i.) (peak infection) and 21 p.i. (late infection) were lower in mice consuming DF-enriched diets compared to the CN diet. Consumption of WB reduced the expression of Th1/Th17 cytokines. As well, the expression of bacterial recognition and response genes such as Relmβ, RegIIIγ, and Tlr4 increased in mice consuming the RS-enriched diets. Furthermore, each diet generated a region-specific bacterial community, suggesting a link between selection for specific bacterial communities, SCFA concentrations, and inflammation in the murine colon. Collectively, data indicated that the consumption of DF-rich diets ameliorates the effects of C. rodentium-induced enteritis by modifying the host microbiota to increase SCFA production, and bacterial recognition and response mechanisms to promote host health.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 21%
Student > Master 11 15%
Student > Bachelor 9 13%
Researcher 8 11%
Student > Doctoral Student 5 7%
Other 8 11%
Unknown 15 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 34%
Immunology and Microbiology 9 13%
Biochemistry, Genetics and Molecular Biology 8 11%
Medicine and Dentistry 4 6%
Engineering 3 4%
Other 8 11%
Unknown 15 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 January 2017.
All research outputs
#3,202,960
of 22,919,505 outputs
Outputs from Gut Pathogens
#80
of 524 outputs
Outputs of similar age
#67,057
of 420,601 outputs
Outputs of similar age from Gut Pathogens
#1
of 15 outputs
Altmetric has tracked 22,919,505 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 524 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,601 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.