↓ Skip to main content

Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation

Overview of attention for article published in Stem Cell Research & Therapy, May 2013
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#35 of 2,410)
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
4 news outlets
blogs
1 blog
twitter
6 X users
facebook
4 Facebook pages

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
138 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation
Published in
Stem Cell Research & Therapy, May 2013
DOI 10.1186/scrt209
Pubmed ID
Authors

Sebastiaan van Gorp, Marjolein Leerink, Osamu Kakinohana, Oleksandr Platoshyn, Camila Santucci, Jan Galik, Elbert A Joosten, Marian Hruska-Plochan, Danielle Goldberg, Silvia Marsala, Karl Johe, Joseph D Ciacci, Martin Marsala

Abstract

INTRODUCTION: Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. METHODS: Three-month-old female Sprague-Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. RESULTS: Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons. CONCLUSIONS: Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 138 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 3%
United Kingdom 3 2%
Spain 1 <1%
Switzerland 1 <1%
Unknown 129 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 21%
Researcher 23 17%
Student > Master 13 9%
Student > Bachelor 9 7%
Student > Postgraduate 9 7%
Other 29 21%
Unknown 26 19%
Readers by discipline Count As %
Medicine and Dentistry 30 22%
Agricultural and Biological Sciences 28 20%
Neuroscience 18 13%
Nursing and Health Professions 10 7%
Biochemistry, Genetics and Molecular Biology 9 7%
Other 13 9%
Unknown 30 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 43. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 June 2018.
All research outputs
#814,530
of 22,711,242 outputs
Outputs from Stem Cell Research & Therapy
#35
of 2,410 outputs
Outputs of similar age
#6,786
of 195,012 outputs
Outputs of similar age from Stem Cell Research & Therapy
#1
of 26 outputs
Altmetric has tracked 22,711,242 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,410 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 195,012 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.