↓ Skip to main content

Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence

Overview of attention for article published in BMC Genomics, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
3 X users
facebook
3 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence
Published in
BMC Genomics, December 2016
DOI 10.1186/s12864-016-3352-4
Pubmed ID
Authors

Kamil C. Kural, Neetu Tandon, Mikhail Skoblov, Olga V. Kel-Margoulis, Ancha V. Baranova

Abstract

In culturing normal diploid cells, senescence may either happen naturally, in the form of replicative senescence, or it may be a consequence of external challenges such as oxidative stress. Here we present a comparative analysis aimed at reconstruction of molecular cascades specific for replicative (RS) and stressinduced senescence (SIPS) in human fibroblasts. An involvement of caspase-3/keratin-18 pathway and serine/threonine kinase Aurora A/ MDM2 pathway was shared between RS and SIPS. Moreover, stromelysin/MMP3 and N-acetylglucosaminyltransferase enzyme MGAT1, which initiates the synthesis of hybrid and complex Nglycans, were identified as key orchestrating components in RS and SIPS, respectively. In RS only, Aurora-B driven cell cycle signaling was deregulated in concert with the suppression of anabolic branches of the fatty acids and estrogen metabolism. In SIPS, Aurora-B signaling is deprioritized, and the synthetic branches of cholesterol metabolism are upregulated, rather than downregulated. Moreover, in SIPS, proteasome/ubiquitin ligase pathways of protein degradation dominate the regulatory landscape. This picture indicates that SIPS proceeds in cells that are actively fighting stress which facilitates premature senescence while failing to completely activate the orderly program of RS. The promoters of genes differentially expressed in either RS or SIPS are unusually enriched by the binding sites for homeobox family proteins, with particular emphasis on HMX1, IRX2, HDX and HOXC13. Additionally, we identified Iroquois Homeobox 2 (IRX2) as a master regulator for the secretion of SPP1-encoded osteopontin, a stromal driver for tumor growth that is overexpressed by both RS and SIPS fibroblasts. The latter supports the hypothesis that senescence-specific de-repression of SPP1 aids in SIPS-dependent stromal activation. Reanalysis of previously published experimental data is cost-effective approach for extraction of additional insignts into the functioning of biological systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Student > Master 8 16%
Researcher 6 12%
Student > Bachelor 5 10%
Professor > Associate Professor 3 6%
Other 8 16%
Unknown 9 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 27%
Agricultural and Biological Sciences 10 20%
Medicine and Dentistry 7 14%
Engineering 3 6%
Nursing and Health Professions 1 2%
Other 4 8%
Unknown 11 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2019.
All research outputs
#5,535,010
of 22,925,760 outputs
Outputs from BMC Genomics
#2,219
of 10,676 outputs
Outputs of similar age
#101,746
of 421,250 outputs
Outputs of similar age from BMC Genomics
#58
of 223 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,676 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,250 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 223 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.