↓ Skip to main content

Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein

Overview of attention for article published in BMC Microbiology, January 2017
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein
Published in
BMC Microbiology, January 2017
DOI 10.1186/s12866-016-0923-0
Pubmed ID
Authors

Shinobu Tsuchiaka, Sayed Samim Rahpaya, Konosuke Otomaru, Hiroshi Aoki, Mai Kishimoto, Yuki Naoi, Tsutomu Omatsu, Kaori Sano, Sachiko Okazaki-Terashima, Yukie Katayama, Mami Oba, Makoto Nagai, Tetsuya Mizutani

Abstract

Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5' untranslated region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted. The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly (A) tail and its genome consists of a 5'UTR, open reading frame encoding a single polyprotein, and 3'UTR. The results of secondary RNA structure analysis showed that in the 5'UTR, BEV-AN12 had an additional clover leaf structure and small stem loop structure, similarly to other BEVs. In pairwise identity analysis, BEV-AN12 showed high amino acid (aa) identities to Enterovirus F in the polyprotein, P2 and P3 regions (aa identity ≥82.4%). Therefore, BEV-AN12 is closely related to Enterovirus F. However, aa sequences in the capsid protein regions, particularly the VP1 encoding region, showed significantly low aa identity to other viruses in genus Enterovirus (VP1 aa identity ≤58.6%). In addition, BEV-AN12 branched separately from Enterovirus E and F in phylogenetic trees based on the aa sequences of P1 and VP1, although it clustered with Enterovirus F in trees based on sequences in the P2 and P3 genome region. We identified novel BEV possessing highly divergent aa sequences in the VP1 coding region in Japan. According to species definition, we proposed naming this strain as "Enterovirus K", which is a novel species within genus Enterovirus. Further genomic studies are needed to understand the pathogenicity of BEVs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 5%
Italy 1 2%
Unknown 40 93%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 16%
Student > Master 6 14%
Student > Ph. D. Student 4 9%
Professor 3 7%
Student > Doctoral Student 3 7%
Other 11 26%
Unknown 9 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 23%
Biochemistry, Genetics and Molecular Biology 9 21%
Veterinary Science and Veterinary Medicine 6 14%
Immunology and Microbiology 3 7%
Computer Science 2 5%
Other 5 12%
Unknown 8 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2017.
All research outputs
#17,863,974
of 22,940,083 outputs
Outputs from BMC Microbiology
#2,016
of 3,203 outputs
Outputs of similar age
#292,068
of 418,156 outputs
Outputs of similar age from BMC Microbiology
#26
of 42 outputs
Altmetric has tracked 22,940,083 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,203 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 418,156 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.