↓ Skip to main content

Application of hairless mouse strain to bioluminescence imaging of Arc expression in mouse brain

Overview of attention for article published in BMC Neuroscience, January 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Application of hairless mouse strain to bioluminescence imaging of Arc expression in mouse brain
Published in
BMC Neuroscience, January 2017
DOI 10.1186/s12868-017-0335-6
Pubmed ID
Authors

Hironori Izumi, Tetsuya Ishimoto, Hiroshi Yamamoto, Hisashi Mori

Abstract

Bioluminescence imaging (BLI) is a powerful technique for monitoring the temporal and spatial dynamics of gene expression in the mouse brain. However, the black fur, skin pigmentation and hair regrowth after depilation of mouse interfere with BLI during developmental and daily examination. The aim of this study was to extend the application of Arc-Luc transgenic (Tg) mice to the BLI of neuronal activity in the mouse brain by introducing the hairless (HL) gene and to examine Arc-Luc expression at various developmental stages without interference from black fur, skin pigmentation, and hair regrowth. The Arc-Luc Tg HL mice were established by crossing the Tg C57BL/6 mouse strain with the HL mouse strain. Under physiological and pathological conditions, BLI was performed to detect the signal intensity changes at various developmental stages and at an interval of <7 days. The established Arc-Luc Tg HL mice exhibited clear and stable photon signals from the brain without interference during development. After surgical monocular deprivation during visual-critical period, large signal intensity changes in bioluminescence were observed in the mouse visual cortex. Exposure of mice to a novel object changed the photon distribution in the caudal and rostral cerebral areas. The temporal pattern of kainic-acid-induced Arc-Luc expression showed biphasic changes in signal intensity over 24 h. This study showed the advantages of using the mutant HL gene in BLI of Arc expression in the mouse brain at various developmental stages. Thus, the use of the Arc-Luc Tg HL mice enabled the tracking of neuronal-activity-dependent processes over a wide range from a focal area to the entire brain area with various time windows.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 15%
Researcher 2 15%
Student > Doctoral Student 2 15%
Librarian 1 8%
Student > Ph. D. Student 1 8%
Other 1 8%
Unknown 4 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 15%
Nursing and Health Professions 1 8%
Agricultural and Biological Sciences 1 8%
Immunology and Microbiology 1 8%
Psychology 1 8%
Other 2 15%
Unknown 5 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2017.
All research outputs
#20,397,576
of 22,947,506 outputs
Outputs from BMC Neuroscience
#1,057
of 1,249 outputs
Outputs of similar age
#354,686
of 419,040 outputs
Outputs of similar age from BMC Neuroscience
#14
of 32 outputs
Altmetric has tracked 22,947,506 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,249 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,040 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.