↓ Skip to main content

Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, January 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#28 of 1,578)
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
1 news outlet
blogs
4 blogs
twitter
3 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
147 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
Published in
Biotechnology for Biofuels and Bioproducts, January 2017
DOI 10.1186/s13068-017-0698-z
Pubmed ID
Authors

Jeongwoo Han, Ling Tao, Michael Wang

Abstract

To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H2 options for STJ via catalytic conversion are investigated: external H2 from natural gas (NG) steam methane reforming (SMR), in situ H2, and H2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H2 from NG SMR or 71% with H2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 147 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 147 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 24 16%
Researcher 21 14%
Student > Ph. D. Student 21 14%
Student > Doctoral Student 11 7%
Student > Bachelor 10 7%
Other 19 13%
Unknown 41 28%
Readers by discipline Count As %
Engineering 27 18%
Chemical Engineering 21 14%
Energy 10 7%
Environmental Science 8 5%
Chemistry 7 5%
Other 24 16%
Unknown 50 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 35. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2018.
All research outputs
#1,158,792
of 25,377,790 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#28
of 1,578 outputs
Outputs of similar age
#24,488
of 422,553 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#2
of 43 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,553 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.