↓ Skip to main content

Why we should care about soft tissue interfaces when applying ultrasonic diathermy: an experimental and computer simulation study

Overview of attention for article published in Journal of Therapeutic Ultrasound, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Why we should care about soft tissue interfaces when applying ultrasonic diathermy: an experimental and computer simulation study
Published in
Journal of Therapeutic Ultrasound, January 2017
DOI 10.1186/s40349-017-0086-y
Pubmed ID
Authors

Thaís Pionório Omena, Aldo José Fontes-Pereira, Rejane Medeiros Costa, Ricardo Jorge Simões, Marco Antônio von Krüger, Wagner Coelho de Albuquerque Pereira

Abstract

One goal of therapeutic ultrasound is enabling heat generation in tissue. Ultrasound application protocols typically neglect these processes of absorption and backscatter/reflection at the skin/fat, fat/muscle, and muscle/bone interfaces. The aim of this study was to investigate the heating process at interfaces close to the transducer and the bone with the aid of computer simulation and tissue-mimicking materials (phantoms). The experimental setup consists of physiotherapeutic ultrasound equipment for irradiation, two layers of soft tissue-mimicking material, and one with and one without an additional layer of bone-mimicking material. Thermocouple monitoring is used in both cases. A computational model is used with the experimental parameters in a COMSOL® software platform. The experimental results show significant temperature rise (42 °C) at 10 mm depth, regardless of bone layer presence, diverging 3 °C from the simulated values. The probable causes are thermocouple and transducer heating and interface reverberations. There was no statistical difference in the experimental results with and without the cortical bone for the central thermocouple of the first interface [t(38) = -1.52; 95% CI = -0.85, 0.12; p = 14]. Temperature rise (>6 °C) close to the bone layer was lower than predicted (>21 °C), possibly because without the bone layer, thermocouples at 30 mm make contact with the water bath and convection intensifies heat loss; this factor was omitted in the simulation model. This work suggests that more attention should be given to soft tissue layer interfaces in ultrasound therapeutic procedures even in the absence of a close bone layer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 27%
Student > Postgraduate 3 20%
Student > Ph. D. Student 2 13%
Student > Doctoral Student 1 7%
Student > Master 1 7%
Other 3 20%
Unknown 1 7%
Readers by discipline Count As %
Engineering 5 33%
Medicine and Dentistry 4 27%
Nursing and Health Professions 2 13%
Environmental Science 1 7%
Social Sciences 1 7%
Other 0 0%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 July 2018.
All research outputs
#14,261,534
of 22,947,506 outputs
Outputs from Journal of Therapeutic Ultrasound
#41
of 76 outputs
Outputs of similar age
#227,443
of 419,163 outputs
Outputs of similar age from Journal of Therapeutic Ultrasound
#1
of 5 outputs
Altmetric has tracked 22,947,506 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 76 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,163 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them