↓ Skip to main content

Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
226 Dimensions

Readers on

mendeley
303 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment
Published in
Biotechnology for Biofuels and Bioproducts, February 2017
DOI 10.1186/s13068-017-0718-z
Pubmed ID
Authors

Thomas Auxenfans, David Crônier, Brigitte Chabbert, Gabriel Paës

Abstract

Biorefining of lignocellulosic biomass has become one of the most valuable alternatives for the production of multi-products such as biofuels. Pretreatment is a prerequisite to increase the enzymatic conversion of the recalcitrant lignocellulose. However, there is still considerable debate regarding the key features of biomass impacting the cellulase accessibility. In this study, we evaluate the structural and chemical features of three different representative biomasses (Miscanthus × giganteus, poplar and wheat straw), before and after steam explosion pretreatment at increasing severities, by monitoring chemical analysis, SEM, FTIR and 2D NMR. Regardless the biomass type, combined steam explosion pretreatment with dilute sulfuric acid impregnation resulted in significant improvement of the cellulose conversion. Chemical analyses revealed that the pretreatment selectively degraded the hemicellulosic fraction and associated cross-linking ferulic acids. As a result, the pretreated residues contained mostly cellulosic glucose and lignin. In addition, the pretreatment directly affected the cellulose crystallinity but these variations were dependent upon the biomass type. Important chemical modifications also occurred in lignin since the β-O-4' aryl-ether linkages were found to be homolytically cleaved, followed by some recoupling/recondensation to β-β' and β-5' linkages, regardless the biomass type. Finally, 2D NMR analysis of the whole biomass showed that the pretreatment preferentially degraded the syringyl-type lignin fractions in miscanthus and wheat straw while it was not affected in the pretreated poplar samples. Our findings provide an enhanced understanding of parameters impacting biomass recalcitrance, which can be easily generalized to both woody and non-woody biomass species. Results indeed suggest that the hemicellulose removal accompanied by the significant reduction in the cross-linking phenolic acids and the redistribution of lignin are strongly correlated with the enzymatic saccharification, by loosening the cell wall structure thus allowing easier cellulase accessibility. By contrast, we have shown that the changes in the syringyl/guaiacyl ratio and the cellulose crystallinity do not seem to be relevant factors in assessing the enzymatic digestibility. Some biomass type-dependent and easily measurable FTIR factors are highly correlated to saccharification.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 303 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 1 <1%
Unknown 302 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 49 16%
Student > Ph. D. Student 42 14%
Student > Master 32 11%
Student > Doctoral Student 22 7%
Student > Bachelor 17 6%
Other 43 14%
Unknown 98 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 12%
Chemical Engineering 31 10%
Engineering 29 10%
Biochemistry, Genetics and Molecular Biology 24 8%
Chemistry 19 6%
Other 41 14%
Unknown 122 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 February 2017.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#944
of 1,578 outputs
Outputs of similar age
#255,928
of 424,567 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#38
of 54 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,567 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.