↓ Skip to main content

STUB1/CHIP mutations cause Gordon Holmes syndrome as part of a widespread multisystemic neurodegeneration: evidence from four novel mutations

Overview of attention for article published in Orphanet Journal of Rare Diseases, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
STUB1/CHIP mutations cause Gordon Holmes syndrome as part of a widespread multisystemic neurodegeneration: evidence from four novel mutations
Published in
Orphanet Journal of Rare Diseases, February 2017
DOI 10.1186/s13023-017-0580-x
Pubmed ID
Authors

Stefanie Nicole Hayer, Tine Deconinck, Benjamin Bender, Katrien Smets, Stephan Züchner, Selina Reich, Ludger Schöls, Rebecca Schüle, Peter De Jonghe, Jonathan Baets, Matthis Synofzik

Abstract

CHIP, the protein encoded by STUB1, is a central component of cellular protein homeostasis and interacts with several key proteins involved in the pathogenesis of manifold neurodegenerative diseases. This gives rise to the hypothesis that mutations in STUB1 might cause a far more multisystemic neurodegenerative phenotype than the previously reported cerebellar ataxia syndrome. Whole exome sequencing data-sets from n = 87 index subjects of two ataxia cohorts were screened for individuals with STUB1 mutations. In-depth phenotyping by clinical evaluation and neuroimaging was performed in mutation carriers. We identified four novel STUB1 mutations in three affected subjects from two index families (frequency 2/87 = 2.3%). All three subjects presented with a severe multisystemic phenotype including severe dementia, spastic tetraparesis, epilepsy, and autonomic dysfunction in addition to cerebellar ataxia, plus hypogonadism in one index patient. Diffusion tensor imaging revealed degeneration of manifold supra- and infratentorial tracts. Our findings provide clinical and imaging support for the notion that CHIP is a crucial converging point of manifold neurodegenerative processes, corresponding with its universal biological function in neurodegeneration. Further, our data reveal the second STUB1 family with ataxia plus hypogonadism reported so far, demonstrating that Gordon Holmes syndrome is indeed a recurrent manifestation of STUB1. However, it does not present in isolation, but as part of a broad multisystemic neurodegenerative process. This supports the notion that STUB1 disease should be conceptualized not by historical or clinical syndromic names, but as a variable multisystemic disease defined by disturbed function of the underlying STUB1 gene, which translates into a multidimensional gradual spectrum of variably associated clinical signs and symptoms.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 23%
Researcher 5 10%
Student > Doctoral Student 5 10%
Student > Bachelor 4 8%
Student > Master 4 8%
Other 11 23%
Unknown 8 17%
Readers by discipline Count As %
Medicine and Dentistry 9 19%
Biochemistry, Genetics and Molecular Biology 9 19%
Neuroscience 7 15%
Psychology 5 10%
Agricultural and Biological Sciences 3 6%
Other 6 13%
Unknown 9 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2017.
All research outputs
#14,920,678
of 22,953,506 outputs
Outputs from Orphanet Journal of Rare Diseases
#1,725
of 2,636 outputs
Outputs of similar age
#245,994
of 426,820 outputs
Outputs of similar age from Orphanet Journal of Rare Diseases
#37
of 59 outputs
Altmetric has tracked 22,953,506 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,636 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 426,820 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.