↓ Skip to main content

Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells

Overview of attention for article published in BMC Genomics, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells
Published in
BMC Genomics, January 2017
DOI 10.1186/s12864-016-3253-6
Pubmed ID
Authors

Jun Jin, Rujiao Li, Chunlai Jiang, Ruosi Zhang, Xiaomeng Ge, Fang Liang, Xin Sheng, Wenwen Dai, Meili Chen, Jiayan Wu, Jingfa Xiao, Weiheng Su

Abstract

Coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are two of the major causes of hand, foot and mouth disease (HFMD) world-wide. Although many studies have focused on infection and pathogenic mechanisms, the transcriptome profile of the host cell upon CVA16 infection is still largely unknown. In this study, we compared the mRNA and miRNA expression profiles of human embryonic kidney 293T cells infected and non-infected with CVA16. We highlighted that the transcription of SCARB2, a cellular receptor for both CVA16 and EV71, was up-regulated by nearly 10-fold in infected cells compared to non-infected cells. The up-regulation of SCARB2 transcription induced by CVA16 may increase the possibility of subsequent infection of CVA16/EV71, resulting in the co-infection with two viruses in a single cell. This explanation would partly account for the co-circulation and genetic recombination of a great number of EV71 and CVA16 viruses. Based on correlation analysis of miRNAs and genes, we speculated that the high expression of SCARB2 is modulated by down-regulation of miRNA has-miR-3605-5p. At the same time, we found that differentially expressed miRNA target genes were mainly reflected in the extracellular membrane (ECM)-receptor interaction and circadian rhythm pathways, which may be related to clinical symptoms of patients infected with CVA16, such as aphthous ulcers, cough, myocarditis, somnolence and potentially meningoencephalitis. The miRNAs hsa-miR-149-3p and hsa-miR-5001-5p may result in up-regulation of genes in these morbigenous pathways related to CVA16 and further cause clinical symptoms. The present study elucidated the changes in 293T cells upon CVA16 infection at transcriptome level, containing highly up-regulated SCARB2 and genes in ECM-receptor interaction and circadian rhythm pathways, and key miRNAs in gene expression regulation. These results provided novel insight into the pathogenesis of HFMD induced by CVA16 infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 21%
Student > Master 5 15%
Student > Doctoral Student 3 9%
Researcher 3 9%
Student > Bachelor 2 6%
Other 4 12%
Unknown 10 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 18%
Medicine and Dentistry 5 15%
Agricultural and Biological Sciences 4 12%
Veterinary Science and Veterinary Medicine 2 6%
Computer Science 2 6%
Other 5 15%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2017.
All research outputs
#15,443,875
of 22,953,506 outputs
Outputs from BMC Genomics
#6,717
of 10,686 outputs
Outputs of similar age
#256,043
of 419,042 outputs
Outputs of similar age from BMC Genomics
#127
of 210 outputs
Altmetric has tracked 22,953,506 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,042 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 210 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.