↓ Skip to main content

Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
11 X users
facebook
1 Facebook page

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
63 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy
Published in
Critical Reviews in Diagnostic Imaging, February 2017
DOI 10.1186/s12968-017-0334-x
Pubmed ID
Authors

Peter P. Swoboda, Adam K. McDiarmid, Bara Erhayiem, Graham R. Law, Pankaj Garg, David A. Broadbent, David P. Ripley, Tarique A. Musa, Laura E. Dobson, James R. Foley, Graham J. Fent, Stephen P. Page, John P. Greenwood, Sven Plein

Abstract

Regional contractile dysfunction is a frequent finding in hypertrophic cardiomyopathy (HCM). We aimed to investigate the contribution of different tissue characteristics in HCM to regional contractile dysfunction. We prospectively recruited 50 patients with HCM who underwent cardiovascular magnetic resonance (CMR) studies at 3.0 T including cine imaging, T1 mapping and late gadolinium enhancement (LGE) imaging. For each segment of the American Heart Association model segment thickness, native T1, extracellular volume (ECV), presence of LGE and regional strain (by feature tracking and tissue tagging) were assessed. The relationship of segmental function, hypertrophy and tissue characteristics were determined using a mixed effects model, with random intercept for each patient. Individually segment thickness, native T1, ECV and the presence of LGE all had significant associations with regional strain. The first multivariable model (segment thickness, LGE and ECV) demonstrated that all strain parameters were associated with segment thickness (P < 0.001 for all) but not ECV. LGE (Beta 2.603, P = 0.024) had a significant association with circumferential strain measured by tissue tagging. In a second multivariable model (segment thickness, LGE and native T1) all strain parameters were associated with both segment thickness (P < 0.001 for all) and native T1 (P < 0.001 for all) but not LGE. Impairment of contractile function in HCM is predominantly associated with the degree of hypertrophy and native T1 but not markers of extracellular fibrosis (ECV or LGE). These findings suggest that impairment of contractility in HCM is mediated by mechanisms other than extracellular expansion that include cellular changes in structure and function. The cellular mechanisms leading to increased native T1 and its prognostic significance remain to be established.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 62 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 25%
Student > Postgraduate 7 11%
Other 6 10%
Student > Doctoral Student 5 8%
Student > Master 5 8%
Other 13 21%
Unknown 11 17%
Readers by discipline Count As %
Medicine and Dentistry 31 49%
Engineering 3 5%
Business, Management and Accounting 2 3%
Nursing and Health Professions 2 3%
Agricultural and Biological Sciences 2 3%
Other 4 6%
Unknown 19 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2017.
All research outputs
#5,162,878
of 25,523,622 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#324
of 1,379 outputs
Outputs of similar age
#85,594
of 323,588 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#18
of 36 outputs
Altmetric has tracked 25,523,622 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,379 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,588 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.