↓ Skip to main content

Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice

Overview of attention for article published in Genes and Environment, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice
Published in
Genes and Environment, March 2017
DOI 10.1186/s41021-016-0069-1
Pubmed ID
Authors

Keiko Nohara, Takehiro Suzuki, Kazuyuki Okamura, Junya Matsushita, Shota Takumi

Abstract

The consequences of early-life exposure to chemicals in the environment are emerging concerns. Chronic exposure to naturally occurring inorganic arsenic has been known to cause various adverse health effects, including cancers, in humans. On the other hand, animal studies by Dr. M. Waalkes' group reported that arsenite exposure of pregnant F0 females, only from gestational day 8 to 18, increased hepatic tumors in the F1 (arsenite-F1) males of C3H mice, whose males tend to develop spontaneous hepatic tumors later in life. Since this mice model illuminated novel unidentified consequences of arsenic exposure, we wished to further investigate the background mechanisms. In the same experimental model, we identified a variety of factors that were affected by gestational arsenic exposure, including epigenetic and genetic changes, as possible constituents of multiple steps of late-onset hepatic tumor augmentation in arsenite-F1 males. Furthermore, our study discovered that the F2 males born to arsenite-F1 males developed hepatic tumors at a significantly higher rate than the control F2 males. The results imply that the tumor augmenting effect is inherited by arsenite-F2 males through the sperm of arsenite-F1. In this article, we summarized our studies on the consequences of gestational arsenite exposure in F1 and F2 mice to discuss novel aspects of biological effects of gestational arsenic exposure.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 29%
Student > Bachelor 2 14%
Other 1 7%
Student > Doctoral Student 1 7%
Researcher 1 7%
Other 2 14%
Unknown 3 21%
Readers by discipline Count As %
Medicine and Dentistry 3 21%
Biochemistry, Genetics and Molecular Biology 2 14%
Chemistry 2 14%
Agricultural and Biological Sciences 1 7%
Environmental Science 1 7%
Other 0 0%
Unknown 5 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 March 2017.
All research outputs
#20,660,571
of 25,377,790 outputs
Outputs from Genes and Environment
#88
of 135 outputs
Outputs of similar age
#251,524
of 324,443 outputs
Outputs of similar age from Genes and Environment
#6
of 7 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 135 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,443 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one.