↓ Skip to main content

Growth hormone is increased in the lungs and enhances experimental lung metastasis of melanoma in DJ-1 KO mice

Overview of attention for article published in BMC Cancer, November 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

patent
1 patent

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Growth hormone is increased in the lungs and enhances experimental lung metastasis of melanoma in DJ-1 KO mice
Published in
BMC Cancer, November 2016
DOI 10.1186/s12885-016-2898-5
Pubmed ID
Authors

Chia-Hung Chien, Ming-Jen Lee, Houng-Chi Liou, Horng-Huei Liou, Wen-Mei Fu

Abstract

Growth hormone (GH) mainly serves an endocrine function to regulate somatic growth, but also serves an autocrine function in lung growth and pulmonary function. Several recent studies have demonstrated the role of autocrine GH in tumor progression in some organs. However, it is not clear whether excessive secretion of GH in the lungs is related to pulmonary nodule formation. Firstly, the lung tissues dissected from mice were used for Western blotting and PCR measurement. Secondly, the cultured cells were used for examining effects of GH on B16F10 murine melanoma cells. Thirdly, male C57BL/6 mice were intravenously injected with B16F10 cells and then subcutaneously injected with recombinant GH twice per week for three weeks. Finally, stably transfected pool of B16F10 cells with knockdown of growth hormone receptor (GHR) was used to be injected into mice. We found that expression of GH was elevated in the lungs of DJ-1 knockout (KO) mice. We also examined the effects of GH on the growth of cultured melanoma cells. The results showed that GH increased proliferation, colony formation, and invasive capacity of B16F10 cells. In addition, GH also increased the expression of matrix metalloproteinases (MMPs) in B16F10 cells. Administration of GH in vivo enhanced lung nodule formation in C57/B6 mice. Increased lung nodule formation in DJ-1 KO mice following intravenous injection of melanoma cells was inhibited by GHR knockdown in B16F10 cells. These results indicate that up-regulation of GH in the lungs of DJ-1 KO mice may enhance the malignancy of B16F10 cells and nodule formation in pulmonary metastasis of melanoma.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 21%
Researcher 5 21%
Student > Master 5 21%
Student > Bachelor 1 4%
Professor > Associate Professor 1 4%
Other 1 4%
Unknown 6 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 21%
Medicine and Dentistry 3 13%
Agricultural and Biological Sciences 2 8%
Neuroscience 2 8%
Business, Management and Accounting 1 4%
Other 4 17%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 July 2018.
All research outputs
#7,522,616
of 22,958,253 outputs
Outputs from BMC Cancer
#2,094
of 8,344 outputs
Outputs of similar age
#114,567
of 313,355 outputs
Outputs of similar age from BMC Cancer
#31
of 111 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,344 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,355 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.