↓ Skip to main content

Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions

Overview of attention for article published in BMC Ecology and Evolution, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions
Published in
BMC Ecology and Evolution, March 2017
DOI 10.1186/s12862-017-0922-2
Pubmed ID
Authors

Hanna Kinnula, Johanna Mappes, Lotta-Riina Sundberg

Abstract

In nature, organisms are commonly coinfected by two or more parasite strains, which has been shown to influence disease virulence. Yet, the effects of coinfections of environmental opportunistic pathogens on disease outcome are still poorly known, although as host-generalists they are highly likely to participate in coinfections. We asked whether coinfection with conspecific opportunistic strains leads to changes in virulence, and if these changes are associated with bacterial growth or interference competition. We infected zebra fish (Danio rerio) with three geographically and/or temporally distant environmental opportunist Flavobacterium columnare strains in single and in coinfection. Growth of the strains was studied in single and in co-cultures in liquid medium, and interference competition (growth-inhibiting ability) on agar. The individual strains differed in their virulence, growth and ability for interference competition. Number of coinfecting strains significantly influenced the virulence of infection, with three-strain coinfection differing from the two-strain and single infections. Differences in virulence seemed to associate with the identity of the coinfecting bacterial strains, and their pairwise interactions. This indicates that benefits of competitive ability (production of growth-inhibiting compounds) for virulence are highest when multiple strains co-occur, whereas the high virulence in coinfection may be independent from in vitro bacterial growth. Intraspecific competition can lead to plastic increase in virulence, likely caused by faster utilization of host resources stimulated by the competitive interactions between the strains. However, disease outcome depends both on the characteristics of individual strains and their interactions. Our results highlight the importance of strain interactions in disease dynamics in environments where various pathogen genotypes co-occur.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 1%
Unknown 72 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 22%
Researcher 11 15%
Student > Master 8 11%
Student > Bachelor 6 8%
Student > Doctoral Student 6 8%
Other 14 19%
Unknown 12 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 38%
Immunology and Microbiology 9 12%
Biochemistry, Genetics and Molecular Biology 7 10%
Environmental Science 5 7%
Veterinary Science and Veterinary Medicine 4 5%
Other 4 5%
Unknown 16 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2022.
All research outputs
#3,081,965
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#817
of 3,714 outputs
Outputs of similar age
#54,710
of 322,029 outputs
Outputs of similar age from BMC Ecology and Evolution
#28
of 83 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,029 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.