↓ Skip to main content

A global characterization of the translational and transcriptional programs induced by methionine restriction through ribosome profiling and RNA-seq

Overview of attention for article published in BMC Genomics, February 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
61 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A global characterization of the translational and transcriptional programs induced by methionine restriction through ribosome profiling and RNA-seq
Published in
BMC Genomics, February 2017
DOI 10.1186/s12864-017-3483-2
Pubmed ID
Authors

Ke Zou, Qi Ouyang, Hao Li, Jiashun Zheng

Abstract

Among twenty amino acids, methionine has a special role as it is coded by the translation initiation codon and methionyl-tRNAi (Met-tRNAi) is required for the assembly of the translation initiation complex. Thus methionine may play a special role in global gene regulation. Methionine has also been known to play important roles in cell growth, development, cancer, and aging. In this work, we characterize the translational and transcriptional programs induced by methionine restriction (MetR) and investigate the potential mechanisms through which methionine regulates gene expression, using the budding yeast S. cerevisiae as the model organism. Using ribosomal profiling and RNA-seq, we observed a broad spectrum of gene expression changes in response to MetR and identified hundreds of genes whose transcript level and/or translational efficiency changed significantly. These genes show clear functional themes, suggesting that cell slows down its growth and cell cycle progression and increases its stress resistance and maintenance in response to MetR. Interestingly, under MetR cell also decreases glycolysis and increases respiration, and increased respiration was linked to lifespan extension caused by caloric restriction. Analysis of genes whose translational efficiency changed significantly under MetR revealed different modes of translational regulation: 1) Ribosome loading patterns in the 5'UTR and coding regions of genes with increased translational efficiency suggested mechanisms both similar and different from that for the translational regulation of Gcn4 under general amino acid starvation condition; 2) Genes with decreased translational efficiency showed strong enrichment of lysine, glutamine, and glutamate codons, supporting the model that methionine can regulate translation by controlling tRNA thiolation. MetR induced a broad spectrum of gene expression changes at both the transcriptional and translational levels, with clear functional themes indicative of the physiological state of the cell under MetR. Different modes of translational regulation were induced by MetR, including the regulation of the ribosome loading at 5'UTR and regulation by tRNA thiolation. Since MetR extends the lifespan of many species, the list of genes we identified in this study can be good candidates for studying the mechanisms of lifespan extension.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 60 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 25%
Student > Master 11 18%
Researcher 10 16%
Student > Doctoral Student 4 7%
Student > Bachelor 3 5%
Other 7 11%
Unknown 11 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 38%
Agricultural and Biological Sciences 19 31%
Sports and Recreations 2 3%
Chemistry 2 3%
Neuroscience 1 2%
Other 1 2%
Unknown 13 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2017.
All research outputs
#18,538,272
of 22,959,818 outputs
Outputs from BMC Genomics
#8,217
of 10,686 outputs
Outputs of similar age
#237,300
of 309,432 outputs
Outputs of similar age from BMC Genomics
#169
of 236 outputs
Altmetric has tracked 22,959,818 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,686 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,432 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 236 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.